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Computational design optimization is a technique that provides designers with automated

approaches to developing novel and non-intuitive optimal designs. Topology optimization is a

subset of design optimization that seeks to determine the optimal geometry allowing for topologic

changes during the design process. The thesis focuses on the design of devices whose performance

is dominated by convective heat transfer. Convective heat transfer is a process that results from

the coupling between thermal fields and fluid motion. Frequently benefitting from complicated

geometries, convective design problems are an ideal case for computational design optimization.

Commonly used simple engineering models of convection like Newton’s Law of Cooling rely on

design dependent boundary conditions that may lie along immersed design edges. These boundary

conditions are difficult to represent accurately with traditional density approaches for topology

optimization. In this thesis Level Set Method (LSM) and the eXtended Finite Element Methods

(XFEM) are developed to handle convective design problems to ensure crisp resolution of design

boundaries for accurate physical modeling. The LSM is used to provide a precise definition of

geometric boundaries. Here the explicit LSM is used, which updates the parameterized Level Set

Field (LSF) via Nonlinear Programming methods (NLP). The XFEM is incorporated to provide

for crisp resolution of the LSM geometry within the discretization of the governing equations.

With accurate resolution of simplified convection boundary conditions, complicated, potentially

unphysical geometries are developed. To overcome this issue this thesis develops new regularization

approaches for explicit LSMs. To enforce a minimum feature size a new measure is developed that

identifies violations of the minimum feature size. To demonstrate the applicability of the LS-

XFEM approach we study more complicated, coupled problems where the fluid motion is driven by

buoyancy forces. The natural convection model is applied to both 2D and 3D steady-state design
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problems and 2D transient problems.
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Chapter 1

Introduction

With the advent of Computational Fluid Dynamics (CFD) and Finite Element Methods

(FEM) in the past century, designers and engineers have been given the tools to simulate the

response of mechanical systems with complex geometries. The goal of the designer is not to pre-

dict system behavior but to design those systems to produce some particular behavior. This

fundamentally motivates the field of design optimization, a numerical approach to systematically

manipulating design variables to yield an optimal design.

Convective heat transfer is an important factor in the design and operation of many devices,

particularly modern, miniature electronics. An example heatsink is shown in Figure 1.1. Design

variables for this type of geometry could include the fin thickness, fin height and number of fins.

The goal of this work is to develop a computational design methodology for convective cooling and

heating devices. The approach will incorporate the Level Set Method (LSM) and the eXtended

Finite Element Method (XFEM) for topology optimization. These design problems yield challenges

in controlling acceptable geometry, accurately computing the physical response, and accurately

applying boundary conditions.

For simplified physical models the design problem is particularly prone to developing small

geometric features, motivating the ability to directly control geometry feature size. Increasing

physical model fidelity is another approach to discourage small, unphysical geometric features,

however the approach is accompanied by additional numerical cost and complexity.

Convection is the transport of heat via fluid motion. Natural convection, where fluid motion is
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Figure 1.1: Example heatsink design.

driven by buoyancy forces, is important in enclosed, sealed or vented systems. Natural convection

is also an attractive alternative to forced convection due to its robustness and simplicity (Bäıri

et al, 2014). Designing convective devices is challenging due to the complicated interplay of the

fluid motion and temperature.

In this thesis we primarily consider design optimization tools that vary device geometry

and material layout. To characterize these tools, two features should be considered: the physical

model used to resolve the temperature and fluid fields and the form of geometry description. As in

solid mechanics where it is necessary to specify plane-strain or plane-stress in 2D, for convection

problems it is also important to note whether considering thick or thin configurations in 2D. Figure

1.2 outlines the possible geometric configurations for a solid material immersed in fluid. Thin (

Figure 1.2 (b) ) configurations result in convection primarily over the solid domain in 2D while thick

( Figure 1.2 (c) ) configurations primarily experience convection along the solid-fluid boundary in

the 2D representation.

1.1 Geometry Descriptions

As this work considers optimization approaches that vary design geometry, we classify ap-

proaches based on their form of geometry description. Geometry descriptions can generally be
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Figure 1.2: Example 3D (a), 2D thin (b) and 2D thick (c) design configurations.

classified as size, shape or topology optimization.

Size optimization relies on varying a simple set of parameters that govern the size of a

geometry, such as the radius of a circle, Figure 1.3. The oldest and often simplest design tools

incorporate geometry models that use only a few parameters to define the complete device geometry.

For example, spacing of pins along with the thickness of pins and backplane were considered as

variables in the work of Morrison (1992). Bahadur and Bar-Cohen (2005) vary pin-fin height and

spacing in their model (Figure 1.4). Size optimizations benefit from simplicity but are limited by

the predefined geometry. These methods are often used to fine-tune an already existing design.

Shape optimization methods define design variables that are parameters of a given shape. As

in Figure 1.5, these parameters may define the positions of points that define a curve. Methods

that use CAD parameterizations fall into this category (Häußler et al, 2006). These methods rely

on modifying the characteristics of a geometry’s boundary. The geometry variation that can be
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Figure 1.3: Example of size optimization, varying circle radius.

Figure 1.4: Example geometry definition of Bahadur and Bar-Cohen (2005).

achieved automatically is greater than size optimization approaches, better for finding optimal

designs but more computationally expensive. It may also be difficult to ensure that the freely

changing boundaries do not intersect each other or that intersections are handled in a sensible

form.

Topology optimization is the most general form of geometry optimization. These methods

seek to describe geometry so that any geometric changes can be made, boundaries merging or being

created. Topology optimization methods can take the form of a pixel-like representation (Figure

1.6), pixel color representing the material make up of that pixel. A more detailed discussion of
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Figure 1.5: Example of shape optimization, varying point positions defining boundary.

the geometry descriptions within topology optimization is provided in Section 1.5.1. Topology

optimization provides the broadest set of geometry variations for optimal designs to be chosen

from. Different approaches exist to ensure that a ”good” initial guess is not necessary to achieve

a well-performing final design. The freedom in geometry is associated with additional complexity

in predicting device behavior however. Finally, a fundamental conflict exists between the crisp

representation of geometry changes and the smooth response of the system with respect to the

design variables. Optimization algorithms generally perform best on smooth systems, however the

underlying physics may not be smooth.

Figure 1.6: Example of topology optimization.
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1.2 Objective Functions Features and Identifying Minima

Mathematically the optimization problem is written as:

mins Z(s,u(s)) =
∫ t2
t1
z (s,u (t)) dt,

s.t. gi(s) ≤ 0 i = 1 . . . Ng ,

s ∈ S =
{
RNs |sLi ≤ si ≤ sUi , i = 1....Ns

}
,

(1.1)

where one seeks to minimize an objective Z with respect to a set of Ns continuous variables, s. The

objective is a function of time-dependent values of the system states u and the design variables. The

state variables are computed based on the governing equations and given the design variables, a form

of coupling referred to as a Nested Analysis And Design (NAND). The problem is also subject to a

set ofNg inequality constraints gi and a set of box constraints on the design variables (sLi ≤ si ≤ sUi ).

We require that the objective Z(s,u(s)) its time derivative z (s,u (t)) are differentiable with respect

to both the design variables s and state variables u. Finally, the constraint functions gi(s), the

state variables u and the governing equations should also be differentiable with respect to the design

variables s.

The convexity and continuity are important features of a problems objective function. Figure

1.7 demonstrates these features for a simple 1D function. Convex functions have one minima, the

global minima, that is where:

∂Z

∂s
= 0.0

∂2Z

∂2s
≥ 0.0, (1.2)

where Z representing the objective function and s the design variable. Functions that have multiple

points that satisfy (1.2) are non-convex, having both local minima and a global minima. Given the

function information at a single point one can only determine if the point is a local minima based

on (1.2).

The first derivative information (sensitivities or gradients) is important for a number of

reasons including identification of minima and identification of search directions by optimization
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Figure 1.7: Characterization of functions: convex (a), non-convex (b), non-convex and discontinu-
ous (c).

algorithms. Convex functions, Figure 1.7 (a), only have one minima, the global minima. Non-

convex functions, Figure 1.7 (b), have multiple local minima. As objective functions become non-

differentiable or discontinuous, Figure 1.7 (c), finding and identifying minima becomes difficult. For

the methods discussed in this thesis, objective and constraint functions should be differentiable.

The solution to the optimization problem (1.1) can be expressed by the corresponding La-

grangian function:

L(s,u(s)) = Z(s,u(s)) +

Ng∑

i=1

λi gi (s) , (1.3)

λi ≥ 0 ∀ i = 1, ..., Ng , (1.4)

where λi are the Lagrange multipliers for the inequality constraints gi ≤ 0. The Lagrangian function

formulates the constrained optimization problem (1.1) into an min-max problem. To minimize (1.1),

the saddle point should be identified such that:

L(s∗, λi) ≤ L(s∗, λi∗) ≤ L(s, λi∗), (1.5)

where s∗ and λi∗ are the values of the design variables and Lagrange multipliers at the saddle

point. A visual depiction of the saddle point (1.5) is shown in Figure 1.8.
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Figure 1.8: Visual representation of saddle point.

The Karush-Kuhn-Tucker (KKT) conditions are the necessary conditions for determining

if a point, s∗ is an extrema for the constrained problem (1.1). The conditions, only considering

inequality constraints, are (Nocedal and Wright, 2006):

∂L(s∗,u(s∗))
∂sk

= 0, (1.6)

gi(s∗) ≤ 0 ∀ i = 1, ..., Ng , (1.7)

λi∗ ≥ 0 ∀ i = 1, ..., Ng , (1.8)

λi ∗ gi(s∗) = 0 ∀ i = 1, ..., Ng . (1.9)

Additionally, if the Hessian is positive definite, the KKT conditions are sufficient to identify a local
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minima. That is that:

vT

[
∂2L

∂si ∂sj

]
v > 0, (1.10)

for all non-zero v in Rn. For convex problems, this point would also be a global minima.

The residual of a form of the KKT conditions can be used to identify convergence of an

optimization algorithm (Fletcher and Johnson, 1997). Convergence criteria are also often formed

by identifying that the design variables or optimization objective only exhibit small changes over a

number of optimization iterations.

1.3 Optimization Algorithms

A variety of optimization algorithms exist from simple, like random walk and steepest de-

scent to more complex, like the Globally Convergent Method of Moving Asymptotes (GCMMA)

(Svanberg, 1995a). Optimization algorithms are also grouped by their use of gradient information.

Gradient-free methods neglect gradient information and therefore do not require continuous, dif-

ferentiable objective functions. Discrete problems, where design variables have a discrete set of

possible values are also areas where gradient-free methods are well-suited.

Some common gradient-free algorithms are branch-and-bound methods (Land and Doig,

1960), simulated annealing (Shim and Manoochehri, 1997) and genetic algorithms (Balamurugan

et al, 2008). The computational cost of these methods generally suffers when the number of design

variables increases. Topology optimization problems generally require a large number of design

variables (roughly equal to the number of nodes or elements) and for non-linear or transient anal-

yses, the objective function can be quite expensive to compute. Sigmund (2011) showed that these

methods quickly become impractical as meshes become finer.

Gradient-based methods address the scaling concerns of gradient-free methods, using the

gradients to choose good search directions. Sigmund (2011) showed that gradient-based methods

typically need an order of magnitude fewer objective evaluations as compared to gradient-free al-

gorithms. While gradient-based methods become the only logical choice for topology optimization
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methods the linearity of the problems becomes important. The more non-linear the object and

constraint functions become the smaller the region for which the gradient information is a useful

indicator of a “good” search direction. Depicted in [P1], Appendix A, certain physics models can

lead to discontinuous response with topology change. Consider the meeting of two stiff structural

features immersed in a soft material. The influence of each feature will be small until they become

close. This non-linearity can hinder the optimization performance, its rate of convergence for ex-

ample. Gradients also need to be computed in an efficient time. Simple finite difference approaches

are not computationally efficient for a large number of design variables. Efficient calculation of

sensitivities will be discussed in Section 1.4.

Interior point methods and sequential quadratic programming (SQP) are algorithms com-

monly used for solving nonlinear, constrained problems similar to those of topology optimization.

The Method of Moving Asymptotes (MMA) (Svanberg, 1987) and Globally Convergent Method of

Moving Asymptotes (GCMMA) (Svanberg, 1995b) are popular in topology optimization studies.

GCMMA will be used for all problems in this thesis. Nocedal and Wright (2006) provide a more

detailed discussion of the methods discussed above.

1.4 Sensitivity Analysis

The efficient calculation of sensitivities of the objective and constraint functions with respect

to the design variables is an important component of a topology optimization approach. In this

section the objective is used as an example, a function of both the design variables and the state

variables. The calculation of the constraint function derivatives is follows the same approach.

As the objective may be a function of both the design (s) and state (u) variables, it is

decomposed as follows:

dZ(s,u(s))

dsi
=
∂Z

∂si
+

(
∂Z

∂u

)T ∂u

∂si
. (1.11)

The state variables u are computed by solving a residual equation:

R (s,u (s)) = 0. (1.12)
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If the residual equation was well solved (equal to zero), the derivative ∂u/∂si can be computed

using:

∂R

∂si
=
∂R

∂si
+
∂R

∂u

∂u

∂si
, (1.13)

which, can be symbolically solved so that:

∂u

∂si
= −

(
∂R

∂u

)−1 ∂R

∂si
. (1.14)

Inserting this into (1.11) results in the form:

dZ(s,u(s))

dsi
=
∂Z

∂si
−
(
∂Z

∂u

)T (∂R

∂u

)−1 ∂R

∂si
. (1.15)

This form contains the inverse of a matrix, (∂R/∂u)−1, that needs to be carefully handled

to ensure efficiency. As these matrices may be large, the matrix inverse needs to be considered as

a linear solve. The two methods that can be formed are the direct method :

dZ(s,u(s))

dsi
=
∂Z

∂si
−
(
∂Z

∂u

)T

γ ,
∂R

∂u
γ =

∂R

∂si
, (1.16)

and adjoint method :

dZ(s,u(s))

dsi
=
∂Z

∂si
− λT ∂R

∂si
,

(
∂Z

∂u

)T

λ =
∂Z

∂u
. (1.17)

The direct method requires a number of linear solves that is equal to the number of design

variables s while the adjoint method requires a number of solves equal to the number objective and

constraint functions (1 +Ng). If the number of design variables is small relative to the number of

objective and constraints, the direct method is more efficient. If the number of design variables is

large relative to the number of objectives and constraints, the adjoint method computationally less

costly. As topology optimization problems typically have a large number of design variables, the

adjoint method is generally preferred.

The calculation of time-dependent problems also requires careful consideration. The logic

described above can be used, forming the time and space discretized residual equations in one large

system. As the flow of information propagates forward in time, simplifications can be made so that

the entire space-time system does not need to be solved at once. For more detail on this, see [P2].
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1.5 Topology Optimization

This work considers topology optimization, a method where the design variables are capable

of representing a generic material layout. This approach benefits from being able to pick designs

from the broadest set of geometries, aiding in identification of the best performing design. The

generic geometry description leads to more complexity however, typically requiring many design

variables and possibly identifying geometries that are difficult to compute physical responses for.

1.5.1 Geometry Description

The oldest and most common way to describe geometry in topology optimization was de-

veloped by Bendsøe (1989) and Rozvany et al (1992). The density method describes geometry

by defining material distribution in the design domain as a function of the design variables. As

in Figure 1.9 a particular geometry (a) can be discretized element-by-element so that individual

elements are considered as either solid or fluid (b). The density method relaxes this representation

so that the material at any given point can be described as some mixture of either solid or fluid,

a porous media (Figure 1.9 (c)). This variability is defined by a fictitious density, 0 ≤ ρ ≤ 1,

such that ρ = 0 represents fluid and ρ = 1 solid. In the simplest context the design variables may

represent elemental densities, ρ. Bendsøe and Sigmund (2003), Sigmund and Maute (2013) and

Deaton and Grandhi (2014) present reviews of density methods in topology optimization.

The relaxation (Figure 1.9 (c)) is an important step as it allows for smooth response of the

system with respect to the design variables. This smooth response means that sensitivities of the

design objectives with respect to the design variables exist and are well-formed. Without these,

finding a path to an optimal solution would be much more difficult and computationally expensive.

An alternative class of methods for defining geometry is referred to as Level Set Methods

(LSMs). In LSMs the material is defined by a higher order field, the level set field (LSF) φ, such

that the boundary between materials is defined as a level set contour of the field. Often defined as
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(a) Desired Geometry (b) Discretized Geometry (c) Relaxed, Discretized Geometry

Figure 1.9: Density approach to discretizing and relaxing geometry discription.

the zero-contour this is written as:

φ(x) < 0, ∀ x ∈ ΩS ,

φ(x) > 0, ∀ x ∈ ΩF ,

φ(x) = 0, ∀ x ∈ ΓFS ,

(1.18)

where ΩS is the domain of solid material, ΩF the fluid domain and ΓFS the boundary between

the two. This concept is shown in Figure 1.10 where a geometry (a) can be described by a the

field shown in (b). It is important to note that a particular geometry can be represented by an

infinite number of LSFs, the description is not unique. This characteristic leads to a general need

for regularization to retain well-behaved LSFs. A recent review of LSMs is provided by van Dijk

et al (2013).

A bulk of LSMs, such as the work of Allaire et al (2004), can be referred to as implicit LSMs.

These methods update the level set field by solving a Hamilton-Jacobi type equation where interface

velocities are defined as functions of the design objective’s shape sensitivity. This approach combines

the LSM and optimization algorithm into one method. In this thesis an explicit LSM is used. As

studied by Wang and Wang (2006), Luo et al (2007) and Pingen et al (2010) explicit methods

simply prescribe the level set field as a parameterized function of design variables, computing design

objective sensitivities with respect to the level set field parameters. The resulting problem is solved

using a nonlinear programming (NLP) method. The optimization algorithm and the analysis (LS-



www.manaraa.com

14

(a) Desired Geometry (b) Example Levelset field

Figure 1.10: Approach to representing geometry with levelset field.
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XFEM) retain their separate functions. In explicit methods the level set field is often parameterized

by radial basis functions or as used here, standard finite element interpolation functions.

1.5.2 Physics Model Discretization

How the solution of the physics’ governing equations is coupled to the geometry definition

is critical to understanding a topology optimization method. In the context of this work, finite

element methods are used to discretize and solve the governing equations. Other methods may be

used as exemplified by Marck et al (2013), who have studied forced convection problems using the

finite volume method.

Density methods typically couple the geometry model to the finite element method by defining

the material properties as explicit functions of the fictitious material density. For example, in

structural mechanics the elastic modulus E can be defined as a product of the density and the

actual modulus E0 such that E = ρpE0, where p is a penalization parameter. This will result in

void material where ρ = 0 having a vanishing stiffness and a solid material where ρ = 1 having a

stiffness such that E = E0.

For fluid mechanics an extra term (Brinkmann penalization) is commonly added to the

Navier-Stokes equation to penalize non-zero fluid velocities in solid material (Borrvall and Peters-

son, 2003). The parameter of this term is interpolated from the fictitious density. The approach

can be viewed as considering the fluid domain as a porous material with varying porosity.

An often cited downside to density methods is difficulty with non-physical behavior, such

as pressure diffusion through solid (Kreissl and Maute, 2012). Well behavedness of these methods

is related to the proper choice of interpolation rules for material properties so that intermediate

material is discouraged. This choice can become difficult as more coupled physics are considered

(Alexandersen et al, 2014).

LSMs often use a similar approach to incorporate the geometry. Ersatz material methods

treat elements that do not contain a zero iso-contour as either solid or fluid using traditional finite

elements. Intersected elements (containing an iso-contour) are treated as intermediate materials
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with fictitious densities based on the fluid-solid volume fraction of the element or point-wise level

set field values. Smoothed Heaviside functions are often features of these methods, effectively

turning on and off parts of the governing equations in certain regions. As these methods still rely

on similar relaxations as do density methods, ersatz material methods can suffer from smeared

interface phenomena (van Dijk et al, 2013).

In this work the eXtended Finite Element Method (XFEM) is used to incorporate the level

set geometry. The XFEM allows for the crispness of the level set geometry to be retained and relies

on the decomposition of intersected elements into their respective fluid and solid components. An

introduction to the XFEM is provided by Fries and Belytschko (2006) and Khoei (2015).

The XFEM is composed of three parts: interpolation function enrichment, element decom-

position for integration, and boundary condition enforcement. Interpolation function enrichment

is the process of adding or modifying interpolation functions and corresponding degrees of freedom

in intersected elements. The purpose of this enrichment is to allow the element’s interpolation

to represent discontinuities in the field or it’s spatial derivative on boundaries that lie within an

element, Figure 1.11. These discontinuities are critical to accurately representing the field near

material interfaces that lie within elements.

(a) Normal Finite Element (Continuous Field) (b) XFEM Element (Mid-Element Discontinuity)

Figure 1.11: Impact of interpolation function enrichment in XFEM elements.



www.manaraa.com

17

Element integration is also modified such that sets of numeric integration points are identified

in the portions of the element corresponding to each material phase. In this work intersected

elements are decomposed into triangles (2D) or tetrahedra (3D) where triangle or tetrahedra faces

fall along the immersed material interface. Each triangle or tetrahedra is then identified as being

in a particular material phase and the standard Gauss integration points for that subdomain are

used to integrate it, Figure 1.12. Integration points are also defined on triangle edges or tetrahedra

faces that lie along the immersed material interface for integration of that interface.

Figure 1.12: Example decomposition of 2D, intersected element for integration; showing both
volume (dΩ) and interface (dΓ) integration points.

A variety of boundary conditions may need to be enforced including: no-slip fluid, simplified

convection, or pressure loads. Due to the more complicated relationship between nodal degrees of

freedom and the interfaces upon which boundary conditions should be applied, strong enforcement

is not used. Weak methods such as Nitsche’s or Lagrange Multipliers are used. These techniques are

also commonly used in Discontinuous Galerkin methods. A more detailed description the XFEM

used in this work can be found in [P1] (Appendix A) and [P2] (Appendix B).
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1.6 Physical Models

In this thesis two levels of fidelity are considered in modeling convective heat transfer. A

simplified model (1.6.1) is studied in [P1] while the more advanced model (1.6.2) is studied in

[P2].

1.6.1 Simplified Convection

A common engineering method is to lump convective heat fluxes into a simple temperature-

dependent boundary condition, Newton’s Law of Cooling (NLC), and only compute the temperature

field in the solid material. The temperature field in the solid material is governed by the diffusion

equation. Here isotropic materials are considered in steady-state such that:

κ
∂2TS
∂xi∂xi

+ q = 0, (1.19)

where the solid temperature TS is governed by the conductivity κ and the applied flux q. The

convective flux is written as:

qc = h dA (TS − T∞), (1.20)

where the convective flux qc is a product of the convection coefficient h, the infinitesimal surface

area dA, the solid surface temperature TS and the far-field fluid temperature T∞. In this model

the convection coefficient h needs to be estimated given the interface geometry, fluid motion, tem-

perature and material properties (Cengel et al, 1998). In this thesis the convection coefficient is

considered to be constant, a source of error in the model as the optimization will necessarily re-

sult in changing design geometry. Increasing fidelity in the estimation of the convection coefficient

conflicts with the purpose of this model, it being computationally inexpensive.

Incorporation of this convection model for thin 2D problems is a relatively simple task for

both density and LSMs and has been studied by Yin and Ananthasuresh (2002), Bruns (2007), Seo

(2009), and Alexandersen (2011). Modeling thick 2D NLC convection is more difficult, requiring the

incorporation of convective fluxes at the immersed fluid-solid interface in 2D. Density methods do
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not explicitly define this boundary so it must be reconstructed based on characteristic density values

or density gradients. Yin and Ananthasuresh (2002), Moon et al (2004), Yoon and Kim (2005),

Iga et al (2009) and Alexandersen (2011) all incorporate NLC convection into density methods for

thick 2D design problems. 3D problems require a similar approach as the convective surface is also

an immersed material interface within the design domain. An ersatz material method for an LSM

can also use a similar technique as shown in Yamada et al (2011).

Due to the decomposition of the design domain in the LS-XFEM as used in this thesis, in-

tegration can be directly performed along the fluid-solid interface. In this context the modeling

of thick 2D NLC convection problems becomes a relatively straight-forward process. The rela-

tive accuracy of selected density, material interpolation and LS-XFEM approaches for thick NLC

problems is studied in [P1] (Appendix A).

1.6.2 Natural Convection

To increase fidelity, a model of fluid motion and its heat transport are considered. The heat

transport in both the fluid and the solid material is governed by the advection diffusion equation:

ρcp

(
∂T

∂t
+ ui

∂T

∂xi

)
= κ

∂2T

∂xi∂xi
+ q. (1.21)

An isotropic material with conductivity κ is again considered. The material density is ρ, the

heat capacity cp, the time t and material velocity u. For solid materials the velocity is prescribed

to be zero. In the fluid material the velocity is described by the solution to the incompressible

Navier-Stokes equations. The momentum equation is written as:

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

+ fBi , (1.22)

where the fluid stress is written as:

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.23)
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where µ is the dynamic viscosity, δij the Kronecker delta function and p is the pressure. The

incompressibility condition is written as:

∂vi
∂xi

= 0. (1.24)

The Boussinesq approximation is incorporated by defining the body force as:

fBi = −ρgiα (TF − T0) , (1.25)

where gi is the gravitational acceleration vector, α the coefficient of thermal expansion, TF the fluid

temperature and T0 the zero-expansion temperature. Forced convection models would ignore the

buoyancy forces, that is: fBi = 0.0, resulting in a one way coupling.

A number of works have studied forced convection design problems, for example, Yoon (2010),

Lee (2012), McConnell and Pingen (2012), Matsumori et al (2013), Kontoleontos et al (2013) and

Koga et al (2013). LSMs have seen less focus for these problems, being studied by Marck et al

(2013), Makhija and Maute (2015) and Yaji et al (2015). Makhija and Maute (2015) differ from

the Navier-Stokes model presented here, using instead a Boltzman fluid model.

Topology optimization of natural convection systems is in its infancy. The two-way coupling

of the fluid motion and thermal fields can lead to those fields exhibiting complicated behavior. As

applied heat and temperature differences increase so will fluid velocities, leading to dynamic insta-

bilities. Alexandersen et al (2014) and Alexandersen (2015) have been the sole examples of topology

optimization of natural convection systems. These works utilize density methods to study 2D and

3D problems assuming steady-state flow solutions. The authors found convergence of the flow solu-

tion difficult, potentially indicating that transient flow behavior should be modeled. Additionally,

for a micro-pump design problem the penalization of intermediate material was ineffective.

In [P2] (Appendix B) this thesis considers a natural convection design problem utilizing an

explicit LS-XFEM. The goals of this work are to perform optimization of geometries in both 2D

and 3D domains and to consider transient effects using LS-XFEM. Considering the models used

here, this work is limited to low Mach and Reynolds numbers.
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1.7 Regularization and Feature Size Control

LSFs are not a unique representation of a particular geometry. Implicit methods that prop-

agate the field with the Hamilton-Jacobi equation often require reinitialization of the field period-

ically through the optimization process. Explicit methods do not perform this step and leave the

propagation of the field to the optimization algorithm. To retain a well-formed LSF, regulariza-

tion approaches are typically necessary (van Dijk et al, 2013). A number of measures are used to

regularize explicit LSMs such as perimeter and measures of the LSF gradient (van Dijk et al, 2013).

Control of a geometry’s minimum feature size is another useful form of regularization. It is

useful to control feature size for two reasons, to ensure manufacturability and to ensure accurate

representation on the chosen discretization. Design for manufacturability is a common concern due

to the formation of thin, complicated geometries in structural optimizations (Sigmund, 2009). The

representation of the discretized shape resulting from an LSF suffers from artifacts as a result of

limitations in the element interpolation (Jenkins and Maute, 2015). In [P1] it was found that due

to the shape-sensitivities of the LS-XFEM and the problem physics that some form of feature size

control was necessary to ensure convergence to a design.

Feature size has been considered in density method topology optimization in a variety of

contexts, including: manufacturing processes (Zhou et al, 2014), projection schemes (Guest et al,

2004), local density variation (Poulsen, 2003), robust design formulations (Schevenels et al, 2011),

medial surface reconstruction (Zhang et al, 2014) and three-field-schemes (Zhou et al, 2015). A

variety of approaches have also been demonstrated for LSMs. Guo et al (2014), Xia and Shi

(2015), Allaire et al (2014) and Liu et al (2015) utilize the sign-distance or nearly-sign-distance

form of the LSF to identify feature size. The use of these methods for explicit LSMs would require

the reconstruction of such a field at every optimization iteration, something that is considered

overly expensive. Chen et al (2008) and Luo et al (2008) compute a quadratic energy function

of the geometry using the level set interface. These methods function in the context of explicit

LSMs, however their construction makes their response unintuitive. Application to a general set of
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problems appears difficult with these methods.

To alleviate the issues discussed previously, the need for a sign-distance-like LSF and an

unintuitive response motivated the work to develop a more general, straight forward measure,

[M1]. The measure is demonstrated for both heat transfer and solid mechanics design problems in

2D. 3D implementation is only limited by the need to compute closest, tangent distances between

points along a discretized surface.

1.8 Contributions

A summary of the novel contributions of this thesis:

• Application of LS-XFEM topology optimization to simplified convection mod-

els. Applying LS-XFEM to simplified convection was shown in this work ([P1]) to offer

substantial gains in accuracy over a sample of existing methods for thick 2D problems. A

survey of a broader set of design parameters also provided deeper insight into the behavior

of the design problem than previous works.

• Application of LS-XFEM topology optimization to natural convection models.

The challenges with the application of the LS-XFEM to natural convection problems were

explored ([P2]). These challenges include the development of thin solid features and robust

enforcement of boundary conditions on immersed interfaces.

• Optimization of natural convection systems considering transient behavior. In

[P2] transient behavior was considered for a 2D design problem, something not demon-

strated in other works.

• Development of LSF gradient-based measure. In [P1] a new, simple, LSF gradient-

based measure was developed and demonstrated that was able to control sub-element size

geometric features.

• Development of general feature size identification measure. In [M1] a measure
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was developed to identify features smaller than a prescribed value. The measure is only

a function of the discretized XFEM material interface, ensuring geometric consistency be-

tween the analysis for the physical system response and feature size identification. It is

demonstrated on a selection of problems in 2D and the influence of its parameters are

explored.
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Chapter 2

Summary of Publications and Manuscripts

This chapter gives a summary of the peer reviewed articles resulting from this dissertation

([P1],[P2]) and manuscript prepared for submission ([M1]). These papers and manuscripts are

included in the appendix of this document.

This work begins ([P1]) with a study of LS-XFEM applied to simplified convection models,

showcasing the accuracy advantages of LS-XFEM and demonstrated a need for regularization be-

yond perimeter and volume control. [P2] applies LS-XFEM to a more detailed convection model,

studying the influence of the physical model on designs and also performing optimization on a

problem with transient flow behavior. [M1] addresses a recurring need for a general feature size

control in the context of explicit LSMs

2.1 [P1]: Level Set Topology Optimization of Cooling and Heating Devices

using a Simplified Convection Model

This paper outlines a novel application of LS-XFEM topology optimization to design prob-

lems utilizing a simplified convection model. The LS-XFEM is shown to produce an accurate

representation of the simplified convection boundary condition, converging with mesh refinement

to the same characteristic value as a traditional body-fitted finite element method. This is compared

to two examples of existing material interpolation approaches. The existing methods converge to

values far from that of the body-fitted finite element method, Figure 2.1. The LS-XFEM is then

demonstrated on both 2D and 3D convection design problems for both topology optimization and
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parameter optimization with geometric primitives. The form of the geometric primitives allows for

petal-like shapes around a semi-circular base of variable radius. The correlation of resulting designs

with each geometry discretization reinforces insights into the behavior of the design problem.

With application to design problems it is shown that regularization is necessary to prevent

non-physical designs and ensure convergence to an optimal design. For low Biot numbers, thin

features develop both in the fluid and solid domains. The development of the thin solid features

is problematic as their construction and the breaking of them leads the designs to not converge.

Features grow, become thinly connected to the primary body, disconnect and are removed, at which

point new features begin to grow.

A novel, regularization measure is demonstrated based on the level set field gradient that

is able to deter sub-element size features. This measure is not mesh independent however, mo-

tivating the future development of a mesh-independent regularization based on feature size. The

development of this measure is presented in [M1], Appendix C. The development of non-physical

geometric features is fundamentally a result of the overly simple convection model. The influence

of additional model fidelity by modeling motion and thermal fields in the fluid is explored in [P2],

Appendix B.

2.2 [P2]: A Level-set Method for Steady-State and Transient Natural Con-

vection Problems

This paper attempts to resolve the non-physical feature development exhibited in [P1] by

increasing the fidelity of the convection model. In this work natural convection systems are con-

sidered. The thermal field is governed by the advection-diffusion equation while the fluid motion is

governed by the incompressible Navier-Stokes equations with the Boussinesq approximation. The

LS-XFEM is used to approximate the physical model.

The natural convection model is demonstrated for both 2D and 3D steady-state and 2D tran-

sient design problems. For 2D steady-state problems a geometric primitive geometry discretization

was demonstrated in addition to the topology optimization discretization. The increased model
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Figure 2.1: Convergence of topology optimization methods for simplified convection. XFEM ap-
proaches showing significantly closer agreement to reference body-fitted FEM.

fidelity is shown to alleviate the development of non-physical, thin fluid features. Thin features do

continue to develop in the solid material phase however, necessitating the use of the LSF gradient-

based measure developed in [P1]. For low Rayleigh and Grashof numbers, which indicate low flow
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velocities, symmetric flow solutions were unstable for certain shapes. Asymmetric designs were

found to be beneficial to the performance of the design, Figure 2.2. These results were exhibited

in both the geometric primitive and topology optimization discretizations. The sequential time

solution approach used in the transient analysis led to substantial computation time, motivating

the incorporation of more advanced time discretization methods.

Figure 2.2: Designs resulting from 2D steady-state natural convection design problem using con-
stant petal parameters (a), symmetric petal parameters (b) or free petal parameters (c).

2.3 [M1]: A Measure for Feature Size Control in Explicit Level Set eXtended

Finite Element Method Topology Optimization

This manuscript presents the development of a minimum feature-size measure for the regu-

larization of explicit LS-XFEMs. The measure is developed to identify violations of a minimum

feature-size in either a single or both material phases. It is a function only of the discretized

XFEM surface geometry, minimizing differences between the regularized geometry and that which

the physical model is being analyzed upon. The form of the measure is a double integral over the

material interface. The integral is a product of Heaviside functions that consider the Euclidean

distance between integration points and the relative value of tangent to Euclidean distance. The
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measure is demonstrated for two design problems: the MBB beam of Sigmund (2009) and the

convective design of [P1].

For strict enforcement of a minimum feature size, which limits topology change, an inequality

constraint is used. To enforce a minimum feature size that is substantially different than the initial

design’s minimum feature size, a continuation approach is necessary, Figure 2.3. In the continuation

approach the feature size measure is incorporated as a penalty on the objective. After applying

a sequence of larger feature sizes via penalty, the approach switches to a strict constraint on the

violation of the feature size measure for the final stage.

The influence of a tuning parameter rtx in the measure is also demonstrated on the convective

design problem, the parameter influencing the surface roughness of the design geometry, Figure 2.4.

The measure is shown to be an effective approach to limiting feature size for LS-XFEMs in 2D.

The measure is not demonstrated in 3D but the extension should require little additional work and

is left for future study.
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Figure 2.3: MBB beam designs resulting from the application of feature size control through a
continuation approach, initial stage (a), final stage (h). Prescribed feature size shown with red
circle.
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Figure 2.4: Convective device designs resulting from variation in feature size parameter rtx, from
smallest (a) to largest (b).
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Chapter 3

Conclusions

3.1 Concluding Remarks

This thesis primarily aimed to study convective design problems using the Level Set (LS)

eXtended Finite Element Method (XFEM). Both simplified ([P1]) and more advanced ([P2]) models

of convection were incorporated. The application of LS-XFEM to simplified convection models

was shown to result in an approach that accurately computed the system states when referencing

traditional body-fitted finite element methods and comparing against existing material interpolation

methods. For particular problem parameters (low Biot number), the simplified convection model

drives towards geometries that are unphysical in their development of very thin fluid channels. In

([P1]) a simple level set field (LSF) gradient-based measure was developed and demonstrated to

deter sub-element size features. A more advanced, mesh independent measure of minimum feature

size was motivated and then developed and studied in ([M1]). This measure was demonstrated in

2D for a selection of design problems, illustrating important considerations for its application. In

([P2]) the natural convection model governed by the advection-diffusion and incompressible Navier-

Stokes equations was studied for steady-state 2D and 3D and transient 2D problems. The model was

limited in this work to low Mach and Reynolds numbers. The more advanced model was shown to

alleviate the development of unphysical, thin fluid channels but not the development of thin solid

material features. Thin, solid material features necessitated the use of the LSF gradient-based

measure of ([P1]).

The LS-XFEM is a promising approach for convective heat transfer problems, alleviating
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accuracy and robustness issues due to intermediate density materials. The method was shown

to be particularly adept at providing accurate state solutions in problems where Neumann-like,

design dependent boundary conditions are applied on the immersed material interfaces, as in thick,

simplified convection models. The application of Dirichlet-like boundary conditions on immersed

material interfaces for non-linear physical models (Navier-Stokes) was found to require more care.

Current approaches need further study, particularly in 3D to understand the relationship between

the solution robustness (with respect to geometry changes) and accuracy. Regularization of the

explicit LS-XFEM was addressed with two measures: one, LSF gradient-based measure that can

deter sub-element-size features with careful application and two, a mesh-independent, identification

of minimum feature size violation, demonstrated on multiple design problems in 2D.

The work in this study has significantly broadened the understanding of the application of

topology optimization to convective design problems. Further study is still necessary to confi-

dently approach a wide range of natural convection design problems efficiently however. Finally,

a byproduct of this study was the need and development of a set of new geometry-based regu-

larization methods for use in LSMs, a future work goal stated in a number of recent LS-XFEM

studies.

3.2 Future Work

This thesis represents the initial steps in studying the class of natural convection design

problems with LS-XFEM topology optimization and the development of a new feature-size measure.

As such, there are a number of both short term (shown first) and more long term questions and

avenues of further research, summarized here:

• Demonstrate feature-size measure regularization for wider variety of problems: in [M1]

the measure is demonstrated for heat transfer (simplified convection) and solid mechanics

design problems. Primary focuses include: better verification of sensible values for allowable

constraint violations and the influence of parameter rtx on a wider variety of problems.
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• Implement and demonstrate feature-size measure in 3D: currently the implementation of the

measure ([M1]) can only compute tangent surface distances for 2D shapes. An efficient and

reliable implementation of this distance function is necessary to demonstrate the measure

in 3D and verify that it performs properly.

• More efficient time integration approaches for transient analysis: in 2D natural convection,

transient problems ([P2]) the sequential nature of the time integration was shown to lead

to long computational times for each optimization iteration. With the constant time-step

scheme many small steps were necessary to resolve to long-period heating of the device

and the short-period fluid motion. The use of a variable time-step scheme would be an

initial step to shorten the required computational time. Alternative problem definitions

that utilize different system initial conditions are also a promising area of research.

• Further study of scaling difficulties for 3D fluid-solid interfaces: in 3D problems ([P2]) it

was found that the linear system could become difficult to solve as geometry varied. In

addition to the geometric XFEM preconditioner (Lang et al, 2014), ghost-penalty methods

(Schott et al, 2014) should be studied for a variety of problems and geometries to gain a

better understanding of their influence on solution robustness and accuracy.
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Abstract This paper studies topology optimization of
convective heat transfer problems in two and three di-

mensions. The convective fluxes are approximated by
Newton’s Law of Cooling (NLC). The geometry is de-
scribed by a Level Set Method (LSM) and the temper-

ature field is predicted by the eXtended Finite Element
Method (XFEM). A constraint on the spatial gradient
of the level set field is introduced to penalize small,
sub-element-size geometric features. Numerical studies

show that the LSM-XFEM provides improved accuracy
over previously studied density methods and LSMs us-
ing Ersatz material models. It is shown that the NLC

model with an iso-thermal fluid phase may over predict
the convective heat flux and thus promote the forma-
tion of very thin fluid channels, depending on the Biot

number characterizing the heat transfer problem. Ap-
proximating the temperature field in the fluid phase by
a diffusive model mitigates this issue but an explicit
feature size control is still necessary to prevent the for-

mation of small solid members, in particular at low Biot
numbers. The proposed constraint on the gradient of
the level set field is shown to suppress sub-element-

size features but necessitates a continuation strategy
to prevent the optimization process from stagnating as
geometric features merge.
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Method · Extended Finite Element Method · Convec-
tion · Regularization · Feature Size Control
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1 Introduction

Convection is the process of heat transfer due to the

motion of fluid. This process is used for thermal man-
agement in many devices, for example to cool processors
in consumer electronics or to transport energy in heat

exchangers. Optimizing the geometry of the cooling and
heating modules plays an important role in enhancing
the energy transport across material interfaces and im-
proving the volumetric and/or gravimetric energy effi-

ciency of such devices. This work investigates the use of
topology optimization to design convective cooling and
heating devices.

Convection is typically divided into two categories:

natural convection, where temperature dependent buoy-
ancy forces drive the fluid flow, and forced convection,
where an external force drives the flow. Yoon (2010),

Lee (2012), McConnell and Pingen (2012), Matsumori
et al (2013), Marck et al (2013), Koga et al (2013),
Makhija and Maute (2014a), and Yaji et al (2014) have
studied topology optimization of forced convection prob-

lems, resolving flow and temperature fields. Fully-coupled
natural convection problems have seen substantially less
attention and to date has been studied only by Alexan-

dersen et al (2014). In the studies above, the flow is
predicted by the incompressible Navier-Stokes or the
hydrodynamic Boltzmann transport equations and the
thermal energy transport is described by an advection-

diffusion model. While this approach accurately cap-
tures the relevant physical phenomena in the fluid, it is
burdened a large computational cost. To bypass this is-

sue, a common engineering approach is to approximate
the convective heat flux by a simple model for the flux
on the fluid-solid interface, which does not require the

resolution of the flow field and thus reduces the compu-
tational cost. In this study, we consider Newton’s Law
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of Cooling (NLC) which approximates the interface flux
as follows:

q =

∫

ΓFS

h (T − TF ) dΓ , (1)

where q is the flux, h the convection coefficient, T the
temperature at the fluid-solid interface, ΓFS , and TF
the fluid temperature. The value of convection coeffi-

cient, h, depends on the interface geometry, the fluid
motion, the temperature, and the material properties
of the solid and fluid (Cengel et al, 1998). Here, we
consider h being constant. NLC typically assumes a

constant fluid temperature along the surface which is
often set to the fluid far-field (ambient) temperature:
TF = T∞. This work considers NLC-type models where

the value of TF is either constant or varies along the in-
terface.

For integrating NLC-type models into topology op-
timization it is convenient to distinguish between the

following geometric configurations: Consider a three di-
mensional solid body immersed in a fluid, as shown in
Figure 1(a). The body convects heat at the fluid-solid

interface that is marked in gray. This general three di-
mensional configuration can be simplified to a two di-
mensional problem by considering either a thin or thick

body. In both cases the design domain is assumed to be
in the x-y plane. In Figure 1(b) a thin body is depicted
that convects heat primarily at two surfaces with nor-
mals in the z-direction, i.e. normal to the design do-

main. Convection at the remaining surface, whose nor-
mal is in the x-y plane, is negligible and therefore ig-
nored. A thick body is shown in Figure 1(c). Here the

surfaces with a normal in the x-y plane convect heat.
The convection on surfaces with normals orthogonal to
the design domain may or may not be considered.

The majority of topology optimization methods con-
sidering heat convection via NLC are based on the den-
sity or SIMP (Solid Isotropic Microstructure with Pe-
nalization) approach, which was originally developed by

Bendsøe (1989) and Rozvany et al (1992) for structural
topology optimization. The geometry of the body is de-
scribed by its material distribution within the design

domain. A fictitious porous material with continuously
varying density, ρ, is introduced to allow for the con-
tinuous transition between fluid and solid material, i.e.
0 ≤ ρ ≤ 1 where ρ = 0 represents fluid and ρ = 1 solid.

The material properties are interpolated as functions
of the density. For an introduction to density methods,
the reader is referred to Bendsøe and Sigmund (2003);

Sigmund and Maute (2013) and Deaton and Grandhi
(2014) review recent developments.

The NLC model has been integrated into SIMP topol-

ogy optimization methods considering the thin 2-D con-
figuration, for example, by Yin and Ananthasuresh (2002),

Fig. 1: General three dimensional (a) convection prob-

lem and two dimensional simplifications: thin configu-
ration (b), thick configuration (c).

Bruns (2007), Seo (2009), and Alexandersen (2011). For
this configuration, the NLC model can be conveniently

embedded into density topology methods, as the con-
vection coefficient can be interpolated as function of the
density, similarly to the bulk material properties. For

example, by setting the convection coefficient to zero
in the fluid phase the integration of the heat flux over
the entire design domain is equivalent to integrating the

heat flux over just the solid domain.

Considering the thick 2-D or the general 3-D con-
figurations in density topology optimization methods

is more challenging as for these configurations the ge-
ometry of the fluid-solid interface is not explicitly de-
fined via the material distribution. To approximate the
location of the fluid-structure interface and to apply

a convective heat flux, Yin and Ananthasuresh (2002)
and Iga et al (2009) interpolate the convection coeffi-
cient such that the convection coefficient is maximum

for an intermediate density value and vanishes at ex-
treme density values, i.e. ρ = 0 and ρ = 1. Alexander-
sen (2011) follow the method suggested in Bruns (2007)
and approximate the location of the interface via the

spatial gradients of the density distribution; the con-
vection coefficient is defined as a function of the density
difference between neighboring elements. A similar ap-

proach is adopted by Yoon and Kim (2005) using the
element connectivity parameterization method. Moon
et al (2004) approximate the convective flux by sur-

rounding the solid with a fictitious fluid phase of low
diffusivity at ambient temperature.

Level set methods (LSMs) provide an interesting al-

ternative to density topology optimization methods, in
particular for problems with heat convection. The fluid-
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solid interface is defined explicitly via the iso-contour
of the level set function, φ, of a given value, typically
φ = 0. The reader is referred to van Dijk et al (2013)
for an introduction and a review of recent developments

of LSMs. Yamada et al (2011) apply an LSM to thick
2-D convection problem. The design is advanced in the
optimization process via the solution of the Hamilton-

Jacobi equation and an Ersatz material approach is
used to project the geometry onto the finite element
heat transport model. Following the boundary integra-

tion approach of Osher and Fedkiw (2002), the convec-
tion coefficient is defined as a function of the level set
function and its spatial gradient, such that convection
is confined to the vicinity of the fluid-solid interface.

The Ersatz material approach requires the interpo-
lation of physical properties as functions of the level set

function. Similarly to density methods, this may lead to
the formation of geometric artifacts and smeared inter-
face phenomena, affecting the resolution and accuracy

of the finite element predictions (van Dijk et al, 2013).
The latter issue can be overcome by adaptive mesh ap-
proaches; see, for example, Yamasaki et al (2011). In
this work, we introduce the eXtended Finite Element

Method (XFEM) for level set topology optimization of
heat transport problems and study convection problems
approximating the interface flux by NLC-type models.

The XFEM interpolates the state variables and inte-
grates the weak form of the governing equations such
that the geometry of immersed material interfaces is ex-

plicitly captured. The XFEM was originally developed
to describe the propagation of cracks in solids and since
then has been applied to a broad range of problems with
moving interfaces. The reader is referred to Fries and

Belytschko (2006) for a survey of the XFEM. In the con-
text of topology optimization, the XFEM bypasses the
need for material interpolation schemes and does not

smear interface phenomena. These features are partic-
ularly promising for convection problems as the NLC
flux can be integrated along the immersed fluid-solid
boundary conveniently. In this work, we will compare

the resolution and accuracy of the XFEM formulation
of NLC-type boundary conditions against SIMP and
Ersatz material approaches used in previous studies.

We embed the XFEM into an explicit formulation of
the LSM where the parameters of the discretized level

set functions are defined as explicit functions of the
optimization variables and the parameter optimization
problem is solved by a nonlinear programming method.

This level set approach is often referred to as the ex-
plicit LSM (van Dijk et al, 2013) and has been stud-
ied, for example, by Wang and Wang (2006), Luo et al
(2007), and Pingen et al (2010). The specific approach

used here is discussed in detail by Kreissl and Maute

(2011). A new regularization measure will be intro-

duced and used in concert with a perimeter measure
to ensure a well-posed optimization problem. We will
study the proposed combination of LSM and XFEM
for both two and three dimensional problems and il-

lustrate the influence of regularization methods on the
optimized geometry.

The remainder of this paper is organized as follows:

In Section 2, we outline the formulation of the optimiza-
tion problems and the geometry models of density and
LSMs considered in this study. In Section 3, the finite el-

ement formulations of the governing equations for both
material interpolation schemes and the XFEM are pre-
sented. In the Section 4, we compare the temperature
predictions for a thick 2D problem using density, Ersatz

material and XFEM approaches, and we present opti-
mization results obtained with proposed LSM-XFEM
approach. The insight gained from the numerical stud-

ies are summarized in Section 5.

2 Optimization and Geometry Models

In this section, we first present the formulation of the
class of optimization problems considered in this study.
This is followed by a brief discussion of the geometry
models of density and LSMs that are compared in Sec-

tion 4.

2.1 Optimization Problem

In this study we consider two-phase design problems in
two and three dimensions, which can be represented by
the model configurations shown in Figure 2. In both

configurations a heat flux, qB , is applied at point B,
which is located at the bottom center of the design do-
main. We seek to minimize the temperature, TB , at

point B over the set of designs defined by the optimiza-
tion variables, s. The design domain is limited to within
a radius rd of point B as shown in Figure 2. This re-
striction prevents solid material from directly interact-

ing with boundaries of the computational domain. To
regularize the optimization problem, measures of the
perimeter, P , and the spatial gradient of the level set

function, G, are introduced as constraints. These mea-
sures will be discussed in detail in Section 2.3. In ad-
dition, we constrain the ratio of volumes occupied by

the solid and fluid phases. The optimization problem is
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Fig. 2: Model configurations and design domains in 2D
(a) and 3D (b).

defined as:

mins po TB(s)

s.t. (1− cv)VS(s)− cvVF (s) ≤ 0,

P (s)− cp ≤ 0,

G(s)− cg ≤ 0,

(2)

where po is a scaling of the temperature in the objective.
The solid volume is denoted by VS , the fluid volume by

VF , the constrained volume ratio by cv, the perime-
ter constraint value by cp, and the gradient constraint
value by cg. The temperature field, T , is considered to

be dependent on the optimization variables, s, and is
governed by the discretized state equation described in
Section 3. The optimization problem (2) is solved by

a nonlinear programming (NLP) method. The design
sensitivities are computed by the adjoint method.

2.2 Geometry Modeling

In this work we consider density and explicit LSMs. In
both methods, the geometry of a body is defined as a
function of the optimization variables s.

The density methods studied below discretize the
material distribution by finite elements. We define an

independent optimization variable, si, at each node as:

si ∈ {R; smin ≤ si ≤ 1}, for i = 1....Nn, (3)

where smin is a lower bound of the optimization vari-
ables and Nn is the total number of nodes. The lower
bound, smin, is set to a small positive value to avoid

ill-condition of the discretized state equations. In the
thermal finite element analysis, the material properties
are assumed to be element-wise constant. The elemental
density, ρi, of the ith element is computed as follows:

ρi = ρs



Nn∑

j=1

wij



−1

Nn∑

j=1

wijsj (4)

with

wij = max (0, (r − |xei − xj |)) , (5)

where ρs is the solid material density, xei is position vec-
tor of the center of the ith element, xj the coordinates

of the jth node, and r the filter radius. The filter (4)
prevents numerical instabilities, such as checker board-
ing, and mitigates the dependence of the optimization

results on the mesh refinement level (Bourdin, 2001;
Bruns and Tortorelli, 2001; Maute, 2014). The interpo-
lation of thermal material properties as function of the
density will be discussed in Section 3.2.

The level set function, φ, defines the geometry of
the body as follows:

φ(x) < 0, ∀ x ∈ ΩS ,

φ(x) > 0, ∀ x ∈ ΩF ,

φ(x) = 0, ∀ x ∈ ΓFS ,

(6)

where x denotes the vector of spatial coordinates. The
level set function is greater than zero in the fluid phase,

ΩF , less than zero in the solid phase, ΩS , and equal to
zero at the fluid-solid interface, ΓFS .

The level set function can be parameterized to con-

strain variations of the geometry of the body. For exam-
ple, van Miegroet and Duysinx (2007) parameterize the
level set function such that the shape of an inclusion is
elliptical. This approach will be used in the example of

Section 4.2 to gain insight into some fundamental prop-
erties of the design problems considered in this work.
In topology optimization, however, one is typically in-

terested in finding the optimum design over a large set
of possible designs. To this end, we discretize the level
set function by bi-linear (2D) and tri-linear (3D) finite

elements and we define an independent optimization
variable, si, at each node as:

si ∈ {R; smin ≤ si ≤ smax}, for i = 1....Nn, (7)
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where smin and smax are lower and upper bounds of
the optimization variables. The approach for choosing
these bounds will be discussed in Section 2.3. Similarly
to the density filter (4), the nodal values, φi, of the level

set function are computed as follows:

φi =



Nn∑

j=1

wij



−1

Nn∑

j=1

wijsj , (8)

with

wij = max (0, (r − |xi − xj |)) . (9)

The level set filter (8) widens the zone of influence of

the optimization variables on the level set field and thus
enhances the convergence of the optimization process
(Kreissl and Maute, 2012).

2.3 LSM Regularization

Similar to density methods, LSMs also require regular-

ization to guarantee convergence of the optimized ge-
ometry with mesh refinement and to control the size
of geometric features. In addition, the spatial gradients

of the level set field need to be constrained to avoid
excessively flat or steep level set fields at the material
interfaces which lead to poorly scaled sensitivities; see,
for example, Burger and Osher (2005) and van Dijk

et al (2012). In contrast to density methods, filters that
either smooth the level set field or the design sensitiv-
ity fields do not regularize LSMs; see, for example, the

discussions in van Dijk et al (2013) and Sigmund and
Maute (2013). Therefore, the level set filter (8) does not
provide regularization. In this work, we study the effec-
tiveness of constraining the perimeter and the level set

gradient measure to regularize the optimization prob-
lem.

Perimeter constraints have been studied, for exam-

ple, by Maute et al (2011) and van Dijk et al (2012).
While the numerical results in these studies suggest
that constraining the perimeter provides effective shape

control, the example in Figure 3 illustrates that impos-
ing a perimeter constraint is insufficient to prevent the
emergence of thin members. Whether or not such thin
members are present in the optimized design depends

on both the formulation of the optimization problem
and the underlying physics. In Section 4, we will study
this issue for the design of convective heating and cool-

ing problems. Note the perimeter can be conveniently
computed by integrating the area along the XFEM in-
terface.

To simultaneously control the minimum feature size
and the spatial gradients of the level set field along the

Fig. 3: Two designs with identical perimeter but differ-

ent gap sizes between the solid fins.

fluid-solid interface we introduce the following gradient
measure:

G =

∫
e−α

2

(|∇φ| − dφp)2 dΩ with α = ep
φ

∆φ
, (10)

where ep is a penalization parameter, dφp is a pre-

scribed level set gradient and ∆φ is the range of the
level set values φ, here defined as:

∆φ = φmax − φmin. (11)

The measure is composed of two terms: the first expo-
nential term approaches zero away from the zero level

set and unity nearby. The second term is a measure of
closeness to the desired level set gradient. Constrain-
ing this measure therefore penalizes level set fields that

have gradient magnitudes differing from the desired value
near the interface. Setting dφp = 1.0 promotes a signed-
distance like level set field near the interface.

Constraining the gradient measure, G, bypasses the

need to reinitialize the level set field throughout the op-
timization to ensure well scaled gradients. This reini-
tialization approach has been used by, for example,
Wang et al (2003), Allaire et al (2004) and others. Sim-

ilar to the penalization of intermediate level set values
proposed by Wang and Zhou (2004), Luo et al (2009),
Mohamadian and Shojaee (2012) and Zhu et al (2015),

the formulation of G prevents excessively flat or steep
level set fields along the fluid-solid interface. In addi-
tion, it also provides a minimum feature size control

when the nodal level set values are bounded by half the
element size, smin = −0.5 he and smax = 0.5 he, noting
that by construction of (8):

smin ≤ φmin and smax ≥ φmax. (12)

By imposing these bounds the gradient filter penalizes

the occurrence of features with a size smaller than the
element size. This is illustrated in Figure 4 considering
two 1D elements of length he. The smallest feature is

created by setting the level set values of the outer nodes
to the lower bound, φmin, and the value of the middle
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Fig. 4: Influence of gradient measure on small features,

dashed line showing small feature with unsatisfied gra-
dient, solid line with valid gradient.

node to a small positive number. To maintain a pre-
scribed gradient of unity the smallest feature is limited
to the width of an element. In general, smaller features
violate the prescribed gradient and are penalized by the

gradient measure. Note that the feature size control of
the gradient measure (10) is tied to the interpolation of
the level set function within neighboring elements and

thus it cannot be directly applied to limiting features
of larger or arbitrary size.

3 Thermal Analysis Model

In this section, we introduce the governing equations,
summarize two material interpolation approaches to ac-
count for convective fluxes at the fluid-solid interface,
and outline the XFEM used in this study.

3.1 Governing Equations

This work considers a simplified thermal model where
the temperature field in the design domain is described

by a linear diffusion model. Assuming steady-state con-
ditions, the residual, R̃T , of the weak form of the non-
dimensional governing equation is:

R̃T =

∫

Ω̃S

∂δT̃S
∂x̃i

C̃ij,S
∂T̃S
∂x̃j

dΩ

+

∫

Ω̃F

∂δT̃F
∂x̃i

C̃ij,F
∂T̃F
∂x̃j

dΩ

−
∫

Γ̃q

δT̃S q̃q dΓ + R̃Ω − R̃FS = 0, (13)

and

T̃F = T̃∞ on ∈ Γ̃∞. (14)

Non-dimensional quantities are marked by (̃·). The non-
dimensional temperature in phase k = [F, S] is denoted

by T̃k; δT̃k is the associated test function, x̃j the j-
th non-dimensional spatial coordinate, C̃ij,k the non-
dimensional diffusivity tensor in phase k, and q̃q the

applied non-dimensional heat flux at Γ̃q. The reference
quantities are the reference temperature, Tref , the char-
acteristic length, Lc, and the reference conductivity,
κref .

Assuming isotropic diffusion and setting the refer-
ence conductivity equal to the conductivity of the solid
phase yields the following definition of the non-dimensional

diffusivity tensor:

C̃ij,k = κ̃kδij , (15)

where the non-dimensional diffusivity κ̃k is defined as:

κ̃k =
κk
κS
. (16)

The diffusivity of phase k is denoted by κk and the
diffusivity of the solid phase by κS . The applied non-
dimensional heat flux q̃q is defined as:

q̃q =
Lc qq
κS Tref

, (17)

where qq is the dimensional heat flux. The non-dimensional
ambient fluid temperature, T̃∞, is imposed at the far
walls, Γ̃∞.

The contribution of the convective fluxes are bro-
ken into two parts: contributions integrated over the
volume, RΩ , and those integrated over the interface,
RFS . These contributions, which will be defined below,

depend on the Biot number:

B =
hLc
κS

. (18)

The Biot number characterizes the ratio of convective
versus diffusive fluxes. As the Biot number decreases
the heat transport is convection limited and the tem-
perature distribution in the solid becomes more uni-

form. For large Biot numbers the convection dominates
and the heat transport is diffusion limited.

In this work, the Biot number is introduced to al-

low for a systematic cross comparison of the different
design configurations. The Biot number defined above is
design independent, as the design domain height is used
as reference length, Lc, and the convection coefficient

is assumed constant. Therefore, the absolute values of
the Biot number likely differ from the ones derived by
standard engineering practice where the Biot number is

typically defined with respect to a particular geometry
and temperature.

45



www.manaraa.com

Level Set Topology Optimization of Cooling and Heating Devices 7

3.2 Material Interpolation Approaches

In Section 4 we will compare for thick 2-D problems
the proposed LSM-XFEM approach against two ap-

proaches that rely on material interpolation schemes.
The approach of Moon et al (2004) uses a SIMP method
to define the geometry. Yamada et al (2011) use an LSM
in combination with an Ersatz material approach. Com-

mon to both methods is that the convective surface flux
is approximated via an equivalent volumetric flux and
the governing equations are solved in the entire design

domain, assuming a continuous temperature field. Both
Moon et al (2004) and Yamada et al (2011) effectively
set the value of diffusivity in the fluid domain to near-

zero, but they differ in the interpolation of convection
coefficient h. These differences will be discussed in the
following subsections.

3.2.1 SIMP Interpolation

Moon et al (2004) present a SIMP interpolation for the

thick 2-D configuration. The non-dimensional diffusion
coefficient, κ̃ and the effective Biot number, Beff , are
interpolated as follows:

κ̃ = ρp, (19)

Beff =
(

1− ρ1/p
)
B, (20)

where p is a penalization factor. Note we dropped the
subscript k in the definition of κ̃ as material interpola-
tion schemes do not explicitly distinguish between the

fluid and solid phase.
The convective flux is integrated over the entire de-

sign domain. The contribution, R̃Ω , in governing equa-

tion (13) is:

R̃Ω =

∫

Ω̃S∪Ω̃F
δT̃ Beff

(
T̃ − T̃∞

)
dΩ. (21)

No additional convective surface fluxes along the fluid-

solid interface are modeled, i.e. R̃FS = 0.
The diffusivity is maximum in the solid phase and

vanishes in the fluid phase while the convection is max-

imum in the fluid phase and zero in the solid phase.
Moon et al (2004) argue that embedding these two in-
terpolation schemes into the governing equations (13)
creates a model where the temperature field in the solid

is only influenced by the convective flux in elements
with intermediate densities along the interface. The con-
vective flux applied in fluid phase has no influence on

the solid temperature due to the vanishing diffusivity in
the fluid. The interplay of diffusivity and convection in
the fluid phase results in fluid temperature that is ap-

proximately equal to the ambient temperature. There-
fore, the convection term (20) can be interpreted as a

penalty method to weakly enforce the ambient temper-

ature in the fluid domain.

3.2.2 Ersatz Material Approach

Yamada et al (2011) presents a level set topology opti-
mization approach where the material parameters are

interpolated based on a signed-distance function. The
parameters of the Ersatz material approach are interpo-
lated from the level set field, φ, by a smoothed Heaviside

function, H̃ as follows:

H̃(φ) =




H̃min ∀ φ ≤ −wφ
Ĥ(φ) ∀ −wφ < φ < wφ
1 ∀ w ≤ φ

, (22)

where the parameter wφ controls the width of the tran-
sition region and H̃min is the minimum value of the
Heaviside function. The term Ĥ is defined as:

Ĥ(φ) = H̃min

+

{
1

2
+

φ

wφ

[
15

16
+
φ2

w2
φ

(
5

8
− 3

16

φ2

w2
φ

)]}(
1− H̃min

)
.

(23)

This function interpolates the non-dimensional diffusiv-
ity and the effective Biot number as follows:

κ̃k = H̃(φ), (24)

Beff =
∂H̃(φ)

∂φ
|∇φ| B, (25)

where ∇φ is the spatial gradient of the level set field.

As in the interpolation approach of Moon et al (2004),
the contributions of the convective fluxes to the resid-

ual (13) are integrated over the entire domain using
(21) with the convection coefficient being defined by
(25). Again, the contribution of the convective fluxes

along the fluid-solid interface, RFS , vanishes.

3.3 XFEM

This work uses the XFEM formulation described in de-
tail by Lang et al (2014). In this subsection, we sum-

marize the basic concepts and formulations. The XFEM
augments the space of test and trial functions by addi-
tional enrichment functions to capture weak or strong
discontinuities within elements intersected by an inter-

face, which is defined here by the zero level set iso-
contour. In this work we exclusively use Heaviside en-
richment functions to resolve NLC-type flux models

which allow for a jump in the temperature field at fluid-
solid interface.
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Fig. 5: Integration domains for XFEM.

Considering a two-phase problem, the temperature
field, T̂ , is approximated as follows:

T̂ (x) =
M∑

m=1

(
H(−φ(x))

NN∑

i

Ni(x) δF,imr(x) T iF,m

+H(φ(x))

NN∑

i

Ni(x) δS,ims(x) T iS,m

)
, (26)

where Ni(x) are the nodal basis functions, M the num-

ber of enrichment levels, T ik,m the degree of freedom at
node i for phase k. The Heaviside function, H, turns
on/off the sets of interpolation functions in the fluid

and solid phases, and is defined as follows:

H(φ) =

{
1 φ > 0

0 φ ≤ 0
. (27)

The Kronecker delta, δk,imr, selects the enrichment level

r that interpolates the temperature in phase k at a
point x using the degree of freedom defined at node i.
Multiple enrichment levels are necessary if the degrees

of freedom defined at a particular node interpolate the
temperature field in multiple, physically disconnected
regions. This prevents spurious coupling of the temper-
ature fields in disconnected regions of the same phase.

A detailed explanation of this phenomenon is provided
by Makhija and Maute (2014b).

This work considers two different XFEM models to

account for convective heat fluxes. The first model as-
sumes an isothermal fluid phase:

T̃F = T̃∞ ∀ x ∈ ΩF . (28)

This simplification allows omitting the fluid phase in
the thermal analysis. The NLC flux (1) is applied along
the fluid-solid interface with T̃F = T̃∞. The contribu-

tion to the governing equation (13) is:

R̃FS =

∫

ΓFS

δT̃S B
(
T̃S − T̃∞

)
dΓ . (29)

No additional volume contribution, R̃Ω , exists.

Alternatively, the model can be relaxed and a spa-
tially varying fluid temperature permitted. To this end,
we model the fluid phase via a fictitious diffusive ma-
terial and enforce the ambient temperature in the fluid

by applying Dirichlet boundary conditions at the far
walls, i.e. the design domain boundaries, Γ∞; see Figure
5. Note that the larger the diffusivity in the fluid, the

smaller is the difference between fluid temperature at
the fluid-solid interface and the ambient temperature.
The flux at the fluid-solid interface yields the following
contribution, RFS , to the governing equation (13):

R̃FS =

∫

Γ̃FS

δT̃S B
(
T̃S − T̃F

)
dΓ

−
∫

Γ̃FS

δT̃F B
(
T̃S − T̃F

)
dΓ . (30)

As we will show below, relaxing the assumption on the

fluid temperature along the fluid-solid interface miti-
gate the emergence of geometric artifacts for the pro-
posed LSM-XFEM approach.

4 Numeric Results

In the following, we will first compare the accuracy of
the material interpolation and XFEM schemes and then

illustrate the key features of the proposed LSM-XFEM
optimization approach for thick 2D and 3D problems.
To gain insight into the main characteristics of the class

of optimization problems considered in this work, we
will initially restrict the design freedom to simple geom-
etry variations which are defined by four optimization
variables. The influence of the proposed regularization

approaches will be studied with examples where the
level set field is parameterized by finite element mesh.

In all examples the thermal field is discretized by

bi-linear (2D) or tri-linear (3D) elements, using either
a standard finite element discretization or the XFEM
scheme outlined above. The design sensitivities of the

objective and constraints are computed by the adjoint
method. The partial derivatives of objective and con-
straints and of the element residuals with respect to
the optimization variables are evaluated by a finite dif-

ference scheme. The optimization problems are solved
by the Globally Convergent Method of Moving Asymp-
totes (GCMMA) of Svanberg (1995). The relative step

size is 0.008 and the initial, the parameters controlling
the adaptation of the lower and upper asymptotes are
0.5, 0.7, and 1.22, respectively. The GCMMA constraint
penalty is set to 50. The linear systems for both the

forward and sensitivity analysis are solved by a direct
solver. All problem parameters and results are given in
non-dimensional form.
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Fig. 6: Test problem for comparing temperature predic-
tions of material interpolation methods and the XFEM.

4.1 Comparison of Convection Models

As discussed previously, the models for including the
NLC flux in the topology optimization of thick 2D and

3D problems vary substantially in the literature. Here,
we compare the interpolation schemes summarized in
Section 3.2 to the proposed LSM-XFEM approach for
the thick two dimensional problem shown in Figure 6.

The width and height of the computational domain

are set to 1. The solid material forms a quarter cir-
cle of radius r̃ = 0.505 around point B where a non-
dimensional flux of q̃B = 0.5 is applied. The non-dimensional
diffusivity of the solid is κ̃S = 1.0, the Biot number is

B = 0.01, and the non-dimensional ambient fluid tem-
perature is T̃∞ = 0.0. Adiabatic boundary conditions
are applied along the lower and left edges, ΓA. For LSM-

XFEM approaches the temperature at the far wall, Γ∞,
is prescribed to T̃F = T̃∞. For the SIMP material ap-
proach, the far wall, Γ∞, is considered adiabatic. In the

Ersatz material approach we consider the far wall, Γ∞,
to be either adiabatic, as described by Yamada et al
(2011), or unconstrained.

First, we consider the 10 different options of convec-
tive flux models which are summarized in Table 1. The

result of a body fitted mesh (BF) serves as reference
solution; here the surface flux along the fluid-solid in-
terface is described by the NLC model with T̃F = T̃∞.
Option XL presents the LSM-XFEM approach also as-

suming T̃F = T̃∞ for the fluid phase; see (29). Options
XLD1 and XLD2 present the LSM-XFEM approach
assuming a diffusive fluid as in (30). In option XLD1

the diffusivity in the fluid, κ̃F , is lower than the solid
diffusivity; in option XLD2 the fluid diffusivity is five
times that of the solid. The level set field is initialized

by a signed-distance function which describes the ma-
terial layout in Figure 6.

Table 1: Methods for predicting temperature field of
problem depicted in Figure 6.

Option Approach

BF Traditional Body Fitted Mesh Finite Element
Analysis

XL XFEM with TF = T∞
XLD1 XFEM with diffusive fluid phase, κ̃F = 0.1
XLD2 XFEM with diffusive fluid phase, κ̃F = 5.0
S1 SIMP interpolation scheme of Moon et al (2004),

r = 1.2
S2 SIMP interpolation scheme of Moon et al (2004),

r = 6.4
E1 Ersatz material interpolation scheme of Yamada

et al (2011), wφ = 0.6, adiabatic far wall
E2 Ersatz material interpolation scheme of Yamada

et al (2011), wφ = 1, adiabatic far wall
EM1 Ersatz material interpolation scheme of Yamada

et al (2011), wφ = 0.005, unconstrained far wall
EM2 Ersatz material interpolation scheme of Yamada

et al (2011), wφ = 0.016 unconstrained far wall

Option S1 and S2 are the SIMP interpolation of
Moon et al (2004) with different smoothing radii to vary
the width of the transition zone between fluid and solid

phase; see (4). At nodes within a radius r̃i = 0.505
around point B the nodal densities are set to 1.0, oth-
erwise to 10−9. The penalty factor is set to p = 3.0.

Options E1 and E2 are the Ersatz material interpola-
tion of Yamada et al (2011) for different wφ-parameter
to vary the sharpness of the smoothed Heaviside func-

tion; see (25). The level set field is initialized by a
signed-distance function. For the material interpolation
schemes, the maximum diffusivity is κ̃ = κ̃S = 1.0 and
the minimum diffusivity is set to κ̃min = 10−8.

We study the model options of Table 1 for different
mesh refinement levels. For the material interpolation
and XFEM schemes, the computational domain is dis-

cretized by uniform meshes of size:

N ×N with N = [20, 40, 60, 80, 100, 120, 140, 160] .

(31)

Unstructured, body-fitted meshes with approximately
the same average element length are used to compute
reference solutions at these different mesh refinement
levels. In Figure 7 we first plot the temperature solu-

tion of the SIMP material models with mesh refine-
ment. Figure 7 shows significant differences between
the SIMP and reference temperature solutions, ranging

from 500 − 10, 000%. The SIMP results do not appear
to converge to the reference solution with mesh refine-
ment. The proper choice of the nodal smoothing radius

or penalty factor is neither known a priori nor obvious
from the numerical results reported above.
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Fig. 7: Comparison of temperature at point B for SIMP

material approach at different mesh refinement levels.
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Fig. 8: Comparison of temperature at point B for Ersatz
material approach at different mesh refinement levels.

The results of the Ersatz material approach of Ya-
mada et al (2011) are plotted in Figure 8. Applying
adiabatic boundary conditions along all boundaries, as

suggested by Yamada et al (2011), an overly large value
of transition width wφ is necessary to approach the
reference solution. Note that option E2 uses a width
wφ = 1.0 that covers the entire domain. For a smaller

transition width, the NLC flux is significantly under-
estimated. Considering the far walls as unconstrained,
the opposite problem is found. Choosing widths corre-

sponding to one quarter (EM1) and one half (EM2)
of an element width on a 50 × 50 mesh, the method
underestimates and then overestimates the NLC flux.

Again, choosing an appropriate value for topology opti-
mization appears difficult at best. The Ersatz material
approach does however provide an improvement over
the SIMP approach, differences from the reference so-

lution varying from 20− 200%.

Figure 9 compares only the XFEM results to the

reference solutions obtained with a body-fitted mesh.
Considering a constant temperature in the fluid phase
with TF = T∞, the XFEM results agree well with the
reference solutions. For the finest mesh the temperature

difference is less than 0.015%. Using a diffusive fluid
model with a large fluid diffusivity also converges well
to the reference solution, within 0.08% difference. As

the diffusivity in the fluid phase is decreased, however,
the surface flux is under-predicted and the tempera-
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Fig. 9: Comparison of temperature at point B highlight-
ing differences between LSM-XFEM approaches and
reference solution.

ture at point B increases, yielding a 4% difference. As
opposed to the material interpolation approaches, the
error is small for the range of fluid diffusivities consid-

ered here. The relation between the error in the tem-
perature solution and the problem parameters is simple
and significantly less sensitive to mesh refinement.

Due to the inherent accuracy issues of the material
interpolation schemes discussed above, only the XFEM
approach will be considered in the following case stud-

ies.

4.2 Petal Geometry Optimization

To gain insight into the main characteristics of the class
of optimization problems studied in this paper, we first

restrict the design freedom and consider the arrange-
ment of petals shown in Figure 10. A set of identi-
cal petals are uniformly placed around a circular base.

The design variables are the petal width, w̃, the over-
all petal-base length, h̃t, the radius of the petal base,
h̃b, and the amplitude of the curved petal edge, ã. The
number of petals is constant during the optimization

process; configurations with different numbers of petals
will be studied in the following. A level set field is con-
structed that describes the petal geometry as a function

of the design parameters; see Appendix A.

The goal of the optimization problem is to minimize
the temperature at point B at which a heat flux q̃B is

applied. The lower edge is assumed adiabatic; along the
other edges the temperature is set to the ambient tem-
perature, i.e. T̃F = T̃∞. The heat flux along the fluid-

solid interface will be modeled by assuming a constant
temperature in the fluid or considering the fluid phase
a diffusive medium. The thermal model parameters and

the mesh size are given in Table 2. Optimization results
for a range of Biot numbers will be compared.
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Fig. 10: Design parameterization for petal geometry op-
timization.

Initially we will study the characteristics of the prob-
lem without any constraint, i.e. cv = cp = ∞ in (2);
later we will investigate the influence of constraints on

the solid volume and the perimeter. For all examples in
Subsection 4.2 there will be no constraint on the gradi-
ent measure, i.e. cg =∞. The upper and lower bounds

on the optimization variable are shown in Table 3 and
remain the same for all case studies in this subsection.

Table 2: Thermal model parameters of petal optimiza-
tion problem.

Parameter Value

Mesh size 100× 200 elements

Ambient temperature T̃∞ = 0
Applied heat flux q̃B = 1.0
Solid conductivity κ̃S = 1

Table 3: Bounds of optimization variables for petal
problem.

Parameter Maximum Minimum

Petal width, w̃ 0.9 0

Total petal-base length, h̃t 0.9 0.15

Base radius, h̃b 0.25 0.15
Sine amplitude, ã 0.4 -0.4

4.2.1 Unconstrained Optimization with Isothermal
Fluid

Considering the unconstrained optimization problem
and assuming an isothermal fluid phase, i.e. T̃F = T̃∞,

through numerical experiments we found this formu-
lation to be non-convex, i.e. the optimization process

Fig. 11: Comparison of designs for varying Biot num-
bers: (a) B = 0.01, (b) B = 0.1, (c) B = 1.0, (d)

B = 10.0, (e) B = 100.

stagnates prematurely in a weak local minimum. To
mitigate this issue, we solve the optimization problem
with different initial designs and only report on the de-

signs with the lowest objective. The optimization vari-
ables of the 8 initial designs we considered are given
in Table 4. In Figure 11 we show the optimum design

with five prescribed petals for different Biot numbers:
[0.01, 0.1, 1.0, 10.0, 100]. The index id of the initial con-
figuration, the temperatures of the initial and optimized
design, and the optimized values of the design variables

are reported in Table 5.

Table 4: Initial Configurations (IC) for petal optimiza-
tion study.

IC index w̃ h̃t h̃b ã

1 0.9 0.9 0.25 0.0
2 0.9 0.9 0.15 0.0
3 0.9 0.15 0.25 0.0
4 0.9 0.15 0.15 0.0
5 0.0 0.9 0.25 0.0
6 0.0 0.9 0.15 0.0
7 0.0 0.15 0.25 0.0
8 0.0 0.15 0.15 0.0

The optimized designs strongly depend on the Biot
number. For large Biot numbers the problem is diffu-
sion limited and therefore the conductive path between
the fluid-solid interface and point B is minimized. The

largest Biot number, B = 100.0, yields a design with
small, almost vanishing petals. For small Biot numbers

Table 5: Optimized designs for varying Biot numbers.

Biot IC
Index

Initial
Temp

Final
Temp

w̃ h̃t h̃b ã

0.01 6 14.188 12.305 0.126 0.900 0.150 -0.168
0.10 2 3.071 3.036 0.900 0.900 0.150 -0.032
1.00 2 1.964 1.958 0.900 0.900 0.150 -0.032
10.00 8 1.764 1.694 0.135 0.305 0.151 -0.400
100.00 7 1.727 1.572 0.126 0.169 0.150 0.015
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Fig. 12: Sequence of designs in the course of the opti-
mization process.
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Fig. 13: Local minima as petals meet. X = 0: Figure 12

(a), X = 1: Figure 12 (b).

the problem is convection limited and the surface area
of the fluid-solid interface is maximized, leading to thin
fluid channels between the petals.

As the width of the fluid channels drops below the
size of an element, the LSM-XFEM formulation used

here creates a local discontinuous minimum and causes
the optimization process to oscillate around this min-
imum. Figure 12 shows a magnified view of the area

marked by the red circle in Figure 11 (a) in the course
of three successive iterations as the optimization pro-
cess oscillates.

The reasons for these oscillations are two-fold: Fun-
damentally, the LSM relies on shape sensitivities which

do not capture the change in the thermal response as
two solid domains merge and the convective surface flux
vanishes. In addition, the interpolation of the level set

field used here causes a potentially discontinuous evo-
lution of the geometry as the feature size drops below
the width of an element.

The latter issue is illustrated in Figure 13 where we
plot the temperature at point B when linearly inter-

polating between the optimization parameters of the
designs in Figure 12 (a) and (b). The primary jump
in temperature coincides with the sign of the level set
function at the node marked by a cross in Figure 12

flipping. Due to the linear interpolation of the level set
function along element edges, the sign flip causes the
gap between two petals to abruptly close which leads

to a discontinuous change in the temperature field. The
oscillatory behavior of the optimization process is due

Fig. 14: Comparison of designs for varying numbers of

petals at B = 1.0: (a) 5 petals, (b) 7 petals, (c) 9 petals.

Table 6: Optimized designs for varying number of
petals.

Num
petals

IC
Index

Initial
Temp

Final
Temp

w̃ h̃t h̃b ã

5.00 2 1.964 1.958 0.900 0.900 0.150 -0.032
7.00 1 1.999 1.902 0.842 0.900 0.150 -0.008
9.00 5 2.162 1.864 0.819 0.900 0.150 -0.007

the slope of the TB-curve in temperature curve in Fig-
ure 13 which suggests that the optimum is “between”
the two designs, i.e. it features a very thin fluid channel

with a width below the size of an element. Note the
oscillations in optimization process would likely remain
even if the interpolation of the level set field allowed for
a continuous geometry evolution and the formation of

sub-element-size channels. The shape sensitivities are
fundamentally unable to capture the strong discontinu-
ity of this NLC model as solid domains merge.

The tendency of the NLC model with an isother-
mal fluid phase to promote the formation of thin fluid

channels is also observed for higher Biot numbers. In
Figure 14 we show the optimized designs for B = 1.0
as the number of petals increases from five to nine. The

index id of the initial configuration, the temperatures
of the initial and optimized designs, and the optimized
values of the design variables are reported in Table 6.
The width of the fluid channel decreases as the number

of petals increases. Note we did not observe any oscil-
lations in the optimization process for these results.

The numerical experiments discussed above suggest
that the NLC model with an isothermal fluid phase
promotes for low Biot numbers the formation of very

thin fluid channels which cannot be resolved by the
discretized level set field and lead to discontinuous lo-
cal minima. Note that as this NLC model assumes a
constant design independent Biot number and a con-

stant fluid temperature, the energy transport in the
fluid phase is over-predicted. In the following we will
show that this problem cannot be overcome with vol-

ume and perimeter constraints, but requires some form
of minimum feature size control. We will further study
whether approximating the heat transport in the fluid

phase via a diffusive model mitigates the issue of the
NLC model with an isothermal fluid phase.
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Fig. 15: Comparison of optimized designs for B = 0.1:
(a) unconstrained, (b) perimeter constrained, and (c)
volume constrained.

Table 7: Pedal optimization with varying geometric
constraints.

Constraint None Perimeter Volume

IC Index 2 2 6
Initial Temp 3.071 3.071 3.755
Final Temp 3.036 4.284 4.146

w̃ 0.900 0.895 0.104

h̃t 0.900 0.465 0.476

h̃p 0.150 0.150 0.208
ã -0.032 -0.019 -0.394

Final Perimeter 8.96 4.00 5.16
Final Area Ratio 0.607 0.160 0.100

4.2.2 Area and Perimeter Constraints

If area and perimeter constraints are imposed, the emer-
gence of thin fluid channel is still observed. Figure 15

shows the optimized designs for a Biot number of B =
0.1 considering (a) no constraint, (b) a perimeter con-
straint with cp = 4.0, and (c), a constraint on the solid
volume with cv = 0.1, i.e. no more than 10 % of the

computational domain can be occupied by solid. These
design are the ones with the lowest objective while be-
ing feasible when starting from the initial configurations

listed in Table 4. The index id of the initial configura-
tion, the temperatures of the initial and optimized de-
sign, and the optimized values of the design variables

are reported in Table 7.

This study suggests that imposing a perimeter con-
straint essentially shrinks the design without noticeably

widening the fluid channels. Note that the temperature
and the perimeter are strongly coupled in the NLC de-
sign problem considered here, as the total convective
flux is a function of the surface area. Imposing a con-

straint on the maximum perimeter limits the total con-
vective flux and thus the minimum objective temper-
ature, which is seen in Table 7. The limitations of the

perimeter constraint have also been noted by Villanueva
and Maute (2014) in the context of structural topology
optimization. Constraining the area is also ineffective

in preventing a narrow gap between the petals at their
tips as well as thin solid members at the circular base.

(a) B = 0.01
κ̃F = 0.1

(b) B = 0.01
κ̃F = 1.0

(c) B = 0.01
κ̃F = 5.0

(d) B = 0.1
κ̃F = 0.1

(e) B = 0.1
κ̃F = 1.0

(f) B = 0.1
κ̃F = 5.0

Fig. 16: Influence of fluid diffusivity on optimized de-
sign.

4.2.3 Diffusive Fluid Model

The NLC flux with isothermal fluid phase over-predicts
the energy transport in the fluid. To mitigate the effect

of this error on the optimized design, we model the fluid
phase by a diffusive medium and study the influence of
the fluid diffusivity on the optimized design for two Biot
numbers: B = [0.01, 0.1].

Figure 16 shows the optimized designs. The index

id of the initial configuration, the temperatures of the
initial and optimized design, and the optimized values
of the design variables are reported in Table 8. These
results suggest that reducing the fluid diffusivity pro-

motes wider fluid channels. The smaller the fluid diffu-
sivity, the more the fluid temperature at the fluid-solid
interface deviates from the ambient temperature and

the overall energy transport is limited by the diffusiv-
ity of the fluid.

While augmenting the NLC flux with a diffusive
fluid model leads to a more realistic energy transport
prediction and discourages the formation of thin fluid

channels, it does not prevent thin solid members. This
phenomenon is pronounced for low Biot numbers (see
Figure 16 (a)-(c)) where the heat transfer is limited by
either the surface convection or the energy transport in

the fluid. These results suggest that the minimum fea-
ture size needs to be constrained even when the NLC
model does not promote thin fluid channels.

4.3 2D Thick Topology Optimization

We increase the design freedom and investigate the be-

havior of the LSM-XFEM approach for topology opti-
mization, where the level set function is parameterized
by a finite element mesh; see Section 2.2. We study

the 2D thick case of the design problem defined in Sec-
tion 2.1 and depicted in Figure 2 (a). Note the height
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Table 8: Optimization results for NLC Model with dif-
fusive fluid phase.

κf Biot IC Initial
Temp

Final
Temp

w̃ h̃t h̃b ã

0.10 0.01 5 17.802 16.303 0.081 0.900 0.250 -0.192
1.00 0.01 5 15.613 13.055 0.081 0.900 0.250 -0.264
5.00 0.01 6 14.263 12.491 0.135 0.900 0.150 -0.168
0.10 0.10 2 5.315 5.154 0.540 0.900 0.250 -0.056
1.00 0.10 6 4.160 3.599 0.520 0.900 0.204 -0.069
5.00 0.10 2 3.255 3.207 0.765 0.900 0.150 -0.048

and width of the design domain are non-dimensional.
The symmetry of the problem is exploited such that
optimization variables are only defined on half of the

domain, their values reflected to the opposing half.

We consider the NLC flux model with a diffusive
fluid phase and study the behavior of the optimiza-
tion problem for different Biot numbers and conduc-

tivities in the fluid phase. The problem parameters are
defined in Table 9. We investigate the need and influ-
ence of constraining the minimum feature size through
the proposed gradient measure (10). If no constraint

on the minimum feature size is imposed, the maximum
allowable value of gradient measure is set to cg = ∞.
To prevent “trivial” solutions where the design domain

is simply occupied by solid material, we also constrain
the volume of the solid phase. To formally eliminate the
perimeter constraint in (2), we set cp =∞ for selected

examples.

The optimization process is started from one of two
initial designs. To generate the first configuration, we
place a semi-circle of solid material with radius r̃i = 0.9

at the center of the bottom edge and then remove ma-
terial corresponding to an evenly spaced grid of 10× 5
cuboids of height and width 0.16; see Figure 17. The
second configuration is a semi-circle of radius r̃i = 0.5

at the center of the bottom edge; see Figure 2. The op-
timization variables are initialized by a corresponding
signed-distance function which is truncated at the op-

timization variable bounds, smin = −0.01 and smax =
0.01. The mesh is composed of 100× 50 elements. The
initial and final values of the objective temperature, TB ,

for each design are shown in Tables 10, 11, 12 & 14.

4.3.1 Area and Perimeter Constrained Optimization

First we minimize temperature TB subject to only a

volume constraint on solid material. The same difficul-
ties are observed using a finite element discretization
of the level set function as were found with the petal

parameterization of Section 4.2. Figure 18 shows the
final designs for a selection of Biot numbers and fluid

Fig. 17: Initial design with array of inclusions.

Table 9: Problem parameters of 2D thick topology op-
timization problem.

Parameter Value

Ambient temperature T̃∞ = 0.0
Flux at point B q̃B = 1.0
Biot number B = {0.01, 10.00}
Solid diffusivity κ̃S = 1.0
Fluid diffusivity κ̃F = {0.001, 0.1, 5.0}
Temperature scaling po = 10
Perimeter constraint cp =∞
Gradient measure constraint cg = {∞, 0.04}
Material volume constraint cv = 0.3
Level set smoothing radius r̃ = 0.048
Gradient measure penalty ep = 5
Design domain radius r̃d = 0.9

(a) B = 10.0
κ̃F = 5.0

(b) B = 10.0
κ̃F = 0.1

(c) B = 10.0
κ̃F = 0.001

(d) B = 0.1
κ̃F = 5.0

(e) B = 0.1
κ̃F = 0.1

(f) B = 0.1
κ̃F = 0.001

Fig. 18: Final designs arriving from initial design of
Figure 17 for varying Biot and fluid diffusivity.

diffusivities using the initial design with an array of in-
clusions. The cases with a high fluid diffusivity, (d) and
(e), do not converge and the level set fields oscillate

in regions with complex, fine features. For larger Biot
numbers the design problem is more benign. As the fluid
diffusivity decreases the designs reach out towards the

far walls where the T̃F = T̃∞ is applied.

Starting from the semi-circular initial design, signif-
icantly different designs are found; see Figure 19. The
final designs show less geometric complexity, exempli-

fied by (b), (c) and (f). These results suggest that the
LSM designs may strongly depend on the initial design,
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(a) B = 10.0
κ̃F = 5.0

(b) B = 10.0
κ̃F = 0.1

(c) B = 10.0
κ̃F = 0.001

(d) B = 0.1
κ̃F = 5.0

(e) B = 0.1
κ̃F = 0.1

(f) B = 0.1
κ̃F = 0.001

Fig. 19: Final designs arriving from circular initial de-

sign for varying Biot and fluid diffusivity.

in particular for problems that are dominated by sur-
face phenomena.

Table 10: Figure 18 design parameters.

Value (a) (b) (c) (d) (e) (f)

Initial Design
Temperature,
TB

2.15 4.21 72.8 7.11 7.92 77.2

Final Design
Temperature,
TB

1.55 2.86 56.8 3.44 5.07 60.7

Final Volume
Ratio, VS

VS+VF

0.0212 0.300 0.300 0.277 0.251 0.300

Perimeter, P 1.81 13.7 16.4 17.1 12.0 16.2

Introducing a constraint on perimeter does not sim-
ply eliminate the difficulties due to small features. The
final designs corresponding to a selection of perimeter

constraint values are shown in Figure 20. As the allow-
able perimeter is decreased the complexity does appear
to decrease, particularly in Figure 20 (d), however thin

regions of fluid are still observed. These features con-
tinue to evolve, closing and reforming, failing to con-
verge to a distinct design.

4.3.2 Gradient Measure Constraint

To prevent the formation of small features which are

observed in particular for configurations with low Biot
numbers and high fluid conductivities, see Figures 18
and 19 (d) and (e), we constrain the value of the level
set gradient measure (10) in addition to the area con-

straint.

Imposing strict limits on the gradient measure through-
out the optimization process may prevent the design

(a) cp =∞ (b) cp = 8.0

(c) cp = 6.0 (d) cp = 4.0

Fig. 20: Final designs arriving from initial design of

Figure 17, B = 0.1, κ̃F = 5.0 for varying perimeter
constraint values.

Table 11: Figure 19 design parameters.

Value (a) (b) (c) (d) (e) (f)

Initial Design
Temperature,
TB

1.83 4.23 247 8.14 10.5 253

Final Design
Temperature,
TB

1.58 2.93 57.1 3.30 4.74 60.9

Final Volume
Ratio, VS

VS+VF

0.0231 0.300 0.300 0.288 0.287 0.300

Perimeter, P 1.73 4.37 7.21 14.8 12.2 9.55

Table 12: Figure 20 design parameters.

Value (a) (b) (c) (d)

Initial Design
Temperature,
TB

7.11 7.11 7.11 7.11

Final Design
Temperature,
TB

2.86 3.93 3.76 4.27

Final Volume
Ratio, VS

VS+VF

0.287 0.299 0.299 0.279

Perimeter, P 17.4 7.85 6.20 4.06

from undergoing topological changes. In the process of
inclusions merging, thin features are typically formed

and their thickness is successively reduced until the fea-
ture vanishes and the inclusions merge. If the constraint
limit for the gradient measure is too low, this process
stagnates as the thickness of the feature approach the

size of an element. To mitigate this issue, we adopt
a continuation strategy, start with a large constraint
limit, and successively lower the limit in the course of

the optimization process. Note, whether or not a strict
enforcement of the gradient measure constraint causes
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Fig. 21: Final designs for Biot = 0.1 and κ̃F = 5.0
with constrained gradient measure (10) corresponding
to (a) initial design with inclusions (Figure 17) and (b)

circular initial design.

the design process to stagnate depends on the initial
design and the evolution of the geometry in the opti-

mization process.

The continuation approach described above is ap-
plied to the initial configuration of Figure 17. The op-

timized geometry is shown in Figure 21 (a). The num-
ber of optimization iterations at each constraint level
is given in Table 13. Starting from semi-circular initial

configuration yields the design in Figure 21 (b). Note in
this case the continuation approach is not needed and
a strict limit of the gradient constrained measure can
be applied from the start of the optimization process.

As observed previously, the optimization results de-
pend strongly on the initial designs. While the proposed

gradient measure is effective in preventing the forma-
tion of small features, it does not guarantee that the op-
timization process converges to a unique solution. We
also observe that the optimization results typically de-

pend on the implementation of the continuation strat-
egy. If the constraint limit is lowered too rapidly, iso-
lated features of solid material may be prevented from

vanishing; see 21(a). Finding an optimal control strat-
egy for the continuation process needs to be developed
in future studies.

Table 13: Continuation approach used in Figure 21 (a).

Gradient constraint, cg Corresponding number of
optimization iterations

0.16 100
0.15 100
0.14 100
0.13 100
0.12 100
0.11 100
0.10 100
0.09 100
0.08 100
0.07 100
0.06 100
0.05 100
0.04 300

Table 14: Figure 21 design parameters.

Value (a) (b)

Initial Design Temperature, TB 5.67 8.14

Final Design Temperature, TB 3.14 4.50

Final Volume Ratio, VS
VS+VF

0.299 0.219

Perimeter, P 10.8 3.70

Gradient Measure, G 0.102 0.0400

4.4 Three Dimensional Optimization Problem

To demonstrate the applicability of the proposed op-
timization method to three dimensional problems, we

next study the problem depicted in Figure 2 and con-
sider two configurations: (a) low Biot number with high
fluid diffusivity (B = 0.1, κ̃F = 10), and (b) low fluid
conductivity (B = 0.1, κ̃F = 0.001). The problem pa-

rameters are summarized in Table 15. The design do-
main is discretized by a 80 × 80 × 40 element mesh,
consisting of eight-node, hexahedral elements. The opti-

mization variables are initialized with a signed-distance
function corresponding to an initial half-sphere of ra-
dius r̃ = 0.457 and truncated at smin = −0.01 and

smax = 0.01. No symmetry is enforced with respect to
the design.

The final designs are shown in Figure 22. Similarly
to the 2D results above, the low Biot number with

large fluid diffusivity yields a design with more compact
features while the lowering the fluid diffusivity yields
longer, finger-like structures. Objective temperatures,

TB , for the initial and final designs are shown in Table
16.

Table 15: 3D problem parameters.

Parameter Value

Far-field fluid temp T̃∞ = 0
Flux at B q̃B = 1
Biot number B = [0.1]
Solid diffusivity κ̃S = 1
Fluid diffusivity κ̃F = [0.1, 10]
Temperature scaling po = 0.1
Perimeter constraint cp =∞
Gradient measure constraint cg = 0.06
Material volume constraint cv = 0.1
Level set smoothing radius r̃ = 0.048
Gradient measure penalty ep = 5
Design domain radius r̃d = 0.9
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Fig. 22: 3D Designs with Biot = 0.1, κ̃F = 10 (a) and
κ̃F = 0.001 (b).

Table 16: 3D topology optimization design tempera-
tures.

Design Initial Design
Temperature,
TB

Final Design
Temperature,
TB

Figure 22 (a) 42.3 37.1
Figure 22 (b) 63.3 48.5

5 Conclusions

This paper has presented an LSM-XFEM topology op-

timization approach for convective heat transfer prob-
lems. The flux along the fluid-solid interface is approx-

imated by Newton’s Law of Cooling, either considering
an iso-thermal fluid phase or modeling the fluid as a dif-
fusive material. The geometry is described by a level set
method and the temperature field is predicted by the

eXtended Finite Element Method. The study focused
on 2D thick and 3D design problems.

The numerical experiments presented in this paper
showed that the XFEM provides improved accuracy
and reliability in predicting the temperature fields over
previously studied density methods and LSMs using an

Ersatz material model. Numerical studies of optimizing
the shape of petals illustrated that the NLC model with
an iso-thermal fluid phase over predicts the convective

heat flux and thus promotes the formation of very thin
fluid channels. This behavior is pronounced at low Biot
numbers. Approximating the temperature field in the
fluid phase by a diffusive model mitigates this issue but

an explicit feature size control is still necessary to pre-
vent the formation of small solid members, in particular
at low Biot numbers.

Constraining the perimeter of the solid phase was
shown to be inefficient to control the feature size. There-
fore, a constraint on the spatial gradient of the level set

field was introduced to penalize small, sub-element-size
geometric features. To prevent the optimization process
from stagnating as geometric features merge, the gradi-

ent measure constraint was applied via a continuation
method, gradually lowering the constraint limit.

The main conclusions drawn from the numerical

studies presented in this paper can be summarized as
follows: While the NLC model provides a simple ap-
proach to consider convective fluxes in design optimiza-

tion problems, it may significantly over predict the heat
flux if an isothermal fluid phase is considered. This
modeling error can significantly affect the optimized de-
sign by promoting the formation of thin fluid channels.

While approximating the energy transport in the fluid
phase via a diffusive model mitigates this issue, the va-
lidity of this model for a broad range of fluid problems

is questionable. Therefore, we recommend modeling the
fluid phase via an appropriate flow model.

The Biot number and the diffusivity of the fluid

phase have a significant impact on the optimized de-
signs. In particular considering low Biot numbers and
high fluid conductivities leads to more complex design

problems, which require some form of feature size con-
trol. Therefore we recommend studying a wide range of
heat transfer and flow characteristics when introducing

new topology optimization approaches for this class of
optimization problems. Only considering benign prob-
lems at high Biot numbers and low flow conductivities
is insufficient for demonstrating the robustness and ap-

plicability of optimization methods.
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The proposed constraint on the spatial gradients of
the level set functions is effective in suppressing sub-
element-size features. However, it lacks the flexibility to
suppress feature of any user defined size. The reader is

referred to Chen et al (2008) and Guo et al (2014) for al-
ternative approaches which consider mesh-independent
features sizes but are computationally more costly and

may require the level set field to be a signed-distance
function. More importantly, our study has shown that
imposing feature size control in LSMs requires some

form of continuation method. Finding an optimal con-
tinuation strategy was beyond the scope of this paper
but deserves attention in future research.
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A Parameterized Petal Geometry Level set
Field

In the petal optimization study of Section 4.2 the level set
field is constructed from an overlay of individual level set
fields which define the semi-circular base and a sequence of
petal shapes swept around the radius. The design variables
are: the relative petal width, w̃, the combined petal and base
length, h̃t, the radius of the circular base, h̃b, and the am-
plitude of the sinusoidal shaped petal sides, ã. A single petal
and base are depicted in Figure 10. The fields are combined
as follows:

φ(x̃) = min(φc(x̃), φp(x̃)), (32)

where φc(x̃) is the level set field of the circular base:

φc(x̃) = |x̃| − hb. (33)

The level set field for each petal is conveniently defined in a
local coordinate system:

[
x̃′

ỹ′

]
=

[
cos (θ) −sin (θ)
sin (θ) cos (θ)

] [
x̃
ỹ

]
, (34)

where the angle of the j − th petal is:

θ = −π
2

+
π

np − 1
j , (35)

assuming j to be a zero based index. The level set field of
each petal describes a cuboid:

φp(x̃) =

([
2x̃xh̃b

w̃w

]p
+

[
ỹyh̃b

h̃p

]p) 1

p

, (36)

where p is the sharpness of the cuboid shape and h̃p is the
petal length:

h̃p = h̃t − h̃b . (37)

The width, w̃w, varies in radial direction, i.e. ỹ′, and is de-
fined as:

w̃w =
π

np − 1

(
h̃b (w̃ − 1)− ỹ′

)
. (38)

Note the maximum width depends on the number of petals
np. The axillary coordinates x̃x and ỹy are defined as func-
tions of the local coordinates x̃′ and ỹ′:

x̃x = x̃′ − sign (−x̃′) ãw̃wsin
(

3

2
π

1

h̃p

(
ỹ′ − h̃b

))
, (39)

ỹy = ỹ′ − h̃b . (40)
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1 Introduction26

Natural convection is the transport of heat via fluid motion driven by temperature27

dependent buoyancy forces. This mode of energy transport plays an important role28

in enclosed, sealed or vented systems, such as heat sinks and cooling devices in29

electronic systems. Heat transfer by natural convection is an attractive concept30

as it does not require additional mechanical devices, such as fans, and features31

robustness and simplicity (Bäıri et al, 2014). As natural convection is dominated32

by the interplay of fluid motion and temperature evolution, the design of efficient33

heat transfer systems is challenging. Design decisions involve selecting a fluid with34

advantageous physical properties, placing heat sources, and determining the geom-35

etry of the enclosure and the internal structures, such as fins. This work presents36

a computational design optimization method for finding the geometry of thermal37

devices where the heat transport is dominated by natural convection.38

The majority of work on optimizing natural convection systems has considered39

parametric geometry models with few design variables. For example, Morrison40

(1992) optimized the thickness and spacing of fins along with the thickness of41

a back-plane. Bahadur and Bar-Cohen (2005) treated the heat sink height and42

spacing of pin-fins as design variables. For such particular device geometries, the43

thermal performance can be approximated by either empirical relations or ana-44

lytic models. To consider a larger design space and to allow for conceptual design45

changes in the optimization process, this work considers a topology optimization46

approach and predicts the thermal response of the system by numerically solving47

a set of governing partial differential equations.48

Topology methods typically describe the geometry of a body and the spatial49

arrangement of distinct materials within a body via the spatial distribution of a50

fictitious material. The volume fraction, or density, of the fictitious material is de-51

fined as a continuous function of the optimization variables, with the extrema rep-52

resenting distinct material phases. Density-based topology optimization methods,53

such as the SIMP (Solid Isotropic Material with Penalization) method, interpolate54

material properties as functions of the density to model geometry changes in the55

physics model. These methods have been successfully applied to a broad range56

of problems (Sigmund and Maute, 2013; Deaton and Grandhi, 2014). However,57

as the optimization process converges to material distributions with intermedi-58

ate densities, the geometry cannot be clearly identified and the physical behavior59

is not correctly predicted. The latter issue affects in particular problems where60

boundary layer phenomena play an important role, such as flows at high Reynolds61

numbers and convective heat transport. To mitigate these shortcomings of density62

methods, Level Set Methods (LSMs) have been introduced to topology optimiza-63

tion. Phase boundaries are defined by the iso-contours of one or more level set64

functions (LSFs) and the material phase is defined by signs of the LSFs. A recent65

review of LSMs in topology optimization is provided by van Dijk et al (2013). This66

work considers a LSM for the design of natural convection problems.67

To overcome the limitations of empirical and analytical models for convec-68

tive heat transfer, engineers often describe the heat transfer in the solid by a69

linear diffusion model and approximate the heat flux at the fluid-solid interface70

by Newton’s Law of Cooling (NLC) which assumes a constant, typically design-71

independent temperature in the fluid. This model has been used in topology op-72

timization with density methods, for example, by Yin and Ananthasuresh (2002),73
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Moon et al (2004), Yoon and Kim (2005), Bruns (2007), Iga et al (2009), Seo (2009)74

and Alexandersen (2011), and with LSMs by Yamada et al (2011) and Coffin and75

Maute (2015). To further improve the prediction of the fluid temperature at the76

fluid-solid interface, the transport of heat in the fluid by convection and diffusion77

needs be considered. For low Mach number applications, where compressibility ef-78

fects in the fluid can be neglected, the fluid temperature field is typically predicted79

by an advection-diffusion model where the fluid is assumed incompressible and de-80

scribed either by the Navier-Stokes or hydrodynamic Boltzmann equations. For81

forced convection problems, this class of models has been considered for topology82

optimization with the density method, for example, by Yoon (2010), Lee (2012),83

McConnell and Pingen (2012), Matsumori et al (2013), Kontoleontos et al (2013)84

and Koga et al (2013). LSMs were studied for forced convection problems, for85

example, by Marck et al (2013), Makhija and Maute (2015) and Yaji et al (2015).86

In contrast to forced convection problems, the work on topology optimization87

for natural convection problems is still in its infancy. Considering natural con-88

vection leads to a two-way coupled problem where fluid and thermal fields are89

interacting. Temperature dependent buoyancy forces drive the flow which in turn90

alters the temperature field. As the strength of the buoyancy forces and the flow ve-91

locities increase, this interaction causes dynamic instabilities in the flow. To date,92

Alexandersen et al (2014) and Alexandersen (2015) presented the first and only93

studies of topology optimization for natural convection design problems. They94

adopted a density method and modeled the thermal response by an advection-95

diffusion equation at steady-state in two dimensions. The flow is described by96

the incompressible Navier-Stokes equations with the Boussinesq approximation97

of the buoyancy forces. The stick condition at fluid-solid interface is enforced via98

Brinkman penalization and the thermal conductivity is defined as a function of the99

density. Alexandersen et al (2014) studied 2D problems and observed convergence100

issues in the flow analysis. This issue is likely due to the steady-state flow model101

being not able to capture transient flow phenomena. Furthermore, these authors102

found that intermediate densities may yield large flow velocities and convective103

fluxes which can be beneficial to the objective, making penalization of intermedi-104

ate material difficult. Alexandersen (2015) expand this approach to 3D problems105

at steady-state.106

The goal of this study is to mitigate the issues caused by intermediate densi-107

ties and to expand the work of Alexandersen et al (2014) onto transient problems.108

Instead of a density method, this work adopts a LSM to provide a crisp repre-109

sentation of material boundaries. Traditionally the level set function is updated110

via the solution of the Hamilton-Jacobi equation; see, for example, Allaire et al111

(2002), Wang et al (2003), Allaire et al (2004) and Burger and Osher (2005). Here,112

parameters of the discretized LSF are defined by explicit functions of optimization113

variables and the resulting optimization problem is solved by a nonlinear program-114

ming (NLP) method. This approach is often referred to as explicit LSM and has115

been studied, for example, by Wang and Wang (2006), Luo et al (2007) and Pingen116

et al (2010). Explicit LSMs allow solving problems with multiple constraints by117

standard NLP schemes.118

To consider a broad range of natural convection problems, the flow and temper-119

ature fields are considered transient. As the appearance of unsteady phenomena120

depends on the geometry, which changes in the optimization process, assuming a121

steady-state response may not be valid throughout the optimization process. Even122
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if the flow and temperature fields of the initial and optimized design converge to123

a steady-state, designs emerging in the optimization process may trigger unsteady124

phenomena, leading to convergence issues in the forward analysis. This work mod-125

els natural convection problems with a transient diffusion model in the solid phase126

and a transient advection-diffusion model in the fluid phase in two and three127

dimensions. The flow is described by the transient incompressible Navier-Stokes128

equations augmented by buoyancy forces modeled by the Boussinesq approxima-129

tion. To preserve the crispness of the level set geometry description in the coupled130

model, the governing equations are discretized in space by a generalized formula-131

tion of the extended finite element method (XFEM). For an introduction to the132

XFEM the reader is referred to Fries and Belytschko (2006) and Khoei (2015).133

The XFEM bypasses the need to introduce fictitious materials and allows enforc-134

ing the boundary conditions directly at the fluid-solid interface. The thermal and135

fluid fields are advanced in time by an implicit time stepping scheme. The unsteady136

system response is accounted for in the formulation of the optimization and the137

computation of the design sensitivities. We will study the main characteristics of138

this approach by numerical examples.139

This work is proceeded by Coffin and Maute (2015) where a simplified con-140

vection model based on NLC was studied using the explicit LSM-XFEM. A key141

finding of Coffin and Maute (2015) is that the NLC approximation promotes un-142

realistically thin fluid channels, as the NLC model over predicts the convective143

flux. This finding motivates the present work where the temperature in the fluid144

is resolved. The same explicit LSM-XFEM scheme has been studied for a variety145

of physical models. Makhija and Maute (2014) study fundamental issues using146

XFEM in level set topology optimization. Makhija and Maute (2015) study forced147

convection using a hydrodynamic Boltzmann transport model and Jenkins and148

Maute (2015) study fluid-structure interaction problems.149

The remainder of this paper is organized as follows: In Section 2, the charac-150

teristics and the formulation of the optimization problems considered in this study151

are described. Section 3 presents two approaches for parameterizing and discretiz-152

ing the LSF. In Section 4, the natural convection model is described, including the153

XFEM discretization, the time stepping scheme and the associated adjoint sensi-154

tivity analysis. Numerical examples are studied in Section 5. The insight gained155

from these studies are presented in Section 6.156

2 The Optimization Problem157

Natural convection problems feature a rich set of physical phenomena which need158

to be accounted for in the formulation of the optimization problem. In this section,159

we first discuss approaches to characterize natural convection problems and then160

introduce the formulation of the optimization problem considered in this study.161

2.1 Natural Convection Design Problems162

The class of design problems considered in this work assumes a solid body im-163

mersed in fluid. An external heat flux is applied to the solid body and the fluid164
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is enclosed by walls which are either assumed adiabatic or at a prescribed tem-165

perature. This configuration idealizes a broad range of problems where natural166

convection plays an important role for heat transfer; see Section 1.167

The energy transport in the solid phase is due to diffusion and in the fluid phase168

due to both, diffusion and convection. Diffusion is the process of heat transfer169

between neighboring material and convection being the heat transfer due to the170

motion of material. The Rayleigh number is a non-dimensional parameter that171

characterizes the relative strength of convective to conductive heat transport in172

natural convection flows and is defined as:173

Ra =
|g| βF ∆T L3

c

νF αF
, αF =

κF
ρF cp,F

(1)

where |g| is the magnitude of the gravitational acceleration vector, βF the fluid174

thermal expansion coefficient, ∆T the temperature difference between the fluid-175

solid interface and the far-field fluid, Lc the characteristic length, and νF the176

fluid kinematic viscosity. The fluid diffusivity, αF , is the ratio of the fluid heat177

conductivity, κF , and the product of fluid density, ρF , and specific heat capacity,178

cp,F . Large Ra values describe configurations dominated by convective energy179

transport.180

For forced convection problems, the flow behavior is typically characterized by181

the Reynolds number, Re, that describes the ratio of inertial to viscous forces and182

is defined as:183

Re =
vcLc
νF

, (2)

where vc is the characteristic fluid velocity, such as the free-stream velocity or the184

fluid velocity at an inlet. In this work the characteristic fluid velocity will be taken185

as the maximum in the domain, defining a maximum local Reynolds number. The186

behavior of natural convection flows is better characterized by the Grashof number187

that describes the ratio of buoyancy to viscous forces and is defined as:188

Gr =
|g|β∆TL3

c

ν2F
. (3)

Assuming temperature independent fluid properties, the Rayleigh number in-189

creases with Grashof number. For low Rayleigh and Grashof numbers and con-190

stant boundary conditions, the flow converges to a steady-state. As the Rayleigh191

number exceeds a critical value, thermal instabilities emerge and the flow exhibits192

an unsteady behavior. One example is the flow in a cylinder, its axis aligned with193

the gravity vector. Holding the top and bottom surfaces at fixed (different) tem-194

peratures and assuming adiabatic side walls, for an aspect ratio 1 the flow in the195

cylinder will exhibit unsteady behavior beginning at Rayleigh numbers of approx-196

imately 105 (Touihri et al, 1999).197

The emergence of instabilities depends on the fluid properties, the boundary198

conditions, and the geometry of the enclosure as well as internal structures. As the199

latter evolves during the optimization process, the flow may become unsteady for200

an intermediate design in the course of the optimization process, while it is steady201

for the initial design. To consider design problems with a large range of Rayleigh202

and Reynolds’ numbers, it is important to describe a potentially unsteady flow203

behavior and consider the transient response in the formulation of the optimization204

problem.205
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2.2 Formulation of Design Optimization Problem206

The design problems studied here have a state-dependent objective, such as min-207

imizing the temperature at a given location in the design domain. As the state208

variables, i.e. temperature, fluid velocity and fluid pressure, may vary in time, the209

objective function is defined by an integral over a given time period. The design210

constraints considered in this work only depend on the LSF which is defined by211

an explicit function of the optimization variables; see Section 3. These constraints212

are used to regularize the optimization problem and are defined in Section 5 for213

the particular problems studied here. This class of optimization problems can be214

written as follows:215

mins Z =
∫ t2
t1
z (s,u (t)) dt,

s.t. gi(s) ≤ 0 i = 1 . . . Ng ,

s ∈ S =
{
RNs |sLi ≤ si ≤ sUi , i = 1....Ns

}
,

(4)

where the objective Z is the integral of the time dependent function z over the time216

interval [t1, t2]. The instantaneous function z depends on the vector of optimization217

variables s and the vector of state variables u, which may vary in time, t. The Ns218

optimization variables si are bounded by lower and upper limits, sLi and sUi . The219

state variables satisfy the governing equations of the natural convection problem220

which are described in Section 4.1. The number of inequality constraints is denoted221

by Ng.222

3 Parametrization of Level Set Function223

The geometry of a solid body immersed in fluid is defined by the LSF, φ(x), where224

x denotes the vector of spatial coordinates. Assuming that the body consists of one225

solid phase, a single LSF function is sufficient to describe the spatial distribution226

of the fluid and solid phases as follows:227

φ(x) < 0, ∀ x ∈ ΩS ,
φ(x) > 0, ∀ x ∈ ΩF ,
φ(x) = 0, ∀ x ∈ ΓFS ,

(5)

where ΩS is the solid phase, ΩF the fluid phase and ΓFS the fluid-solid interface.228

The level set function can be parametrized to describe a combination of geo-229

metric primitives or to allow for the evolution of geometries in the optimization230

process. Both approaches are used for studying numerical examples in Section 5231

and described in the following subsections. In both cases, the LSF is mapped onto232

the XFEM mesh by evaluating the parametrized LSF at the nodes. Standard finite233

element shape functions are used to interpolate the LSF value at a point within234

an element. Here, bi-linear and tri-linear shape functions are used for 2D and 3D235

problems, respectively. These shape functions permit that an element edge can be236

intersected by the fluid-solid interface, i.e. φ = 0, at most once. The lines (2D)237

and faces (3D) spanned by the edge intersection points, xΓi , define the fluid-solid238

interface within a finite element; see Figure 1. The phase, i.e. fluid or solid, of the239
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Fig. 1: Construction of interface geometry for intersected elements.

Fig. 2: Configuration of petal design with three petals

subdomains within the elements is determined by the sign of the level set values of240

the associated finite element nodes. To this end, we introduce an auxiliary level set241

function φ̄ such that φ̄ = −1 in solid subdomains and φ̄ = 1 in fluid subdomains.242

To avoid numerical issues due to the zero level set iso-contour intersecting finite243

element nodes, nodal level set values that are close to zero, i.e. ‖φi‖ ≤ 10−8 he,244

are set to φi = 10−8 he, where he is the size of the finite element. Numerical245

experiments showed that the influence of this perturbation on the optimization246

results is imperceptible.247

The linear interpolation scheme and the construction of the interfaces restrict248

the geometry resolution of the LSF to the size of a finite element and may cause249

convergence issues in the optimization process if sub-element-size features are ad-250

vantageous. This issue has been discussed in Jenkins and Maute (2015) and Coffin251

and Maute (2015). A regularization scheme to discourage the formation of sub-252

element-size features has been recently proposed by the authors and is briefly253

outlined in Subsection 3.3.254

3.1 Petal Geometry255

To gain insight into the fundamental characteristics of the class of natural con-256

vection problems studied here, we first restrict the set of 2D geometries that can257

emerge in the optimization process. To this end, we parametrize the LSF such258

that it describes a radial arrangement of petal-like features. A configuration with259

three petals is depicted in Figure 2. The petals are evenly spaced around a center260

semicircle of radius h̃b. The total petal length is defined by h̃t and the petal width261
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by w̃p, which varies sinusoidally in radial direction with an amplitude ã. These262

parameters, i.e. h̃b, h̃t, w̃p, and ã, can be defined as the optimization variables, si,263

for either each petal individually or uniformly for a group of petals. Note that the264

petal geometry is defined in non-dimensional form with the height of the design do-265

main being the reference length, i.e. x = Lcx̃, where ·̃ denotes a non-dimensional266

parameter.267

The petal configuration is defined by the superposition of multiple LSFs, de-268

scribing the individual petals and the circular base. Each petal is defined in a local269

coordinate system, x̃′, that is aligned with the symmetry axis of the petal. The270

level set value, φ(x̃), is defined as:271

φi(x̃) = minKS(φc(x̃), φp,j(x̃)), (6)

where φc describes the circular base as:272

φc =
√
x̃2 + ỹ2 − h̃b. (7)

The Kreisselmeier-Steinhauser function, minKS , is used to approximate the min-273

imum level set value, φi, ensuring the differentiability of the formulation with274

respect to the petal parameters (Kreisselmeier and Steinhauser, 1979). This func-275

tion is defined as:276

minKS(φ) =
−1

β
ln

(
NLS∑

k=1

e−βφk
)
, (8)

where the minimum level set value of a set of NLS values is computed with a277

sharpness parameter, β. The j-th petal is described by φp,j which defines a cuboid278

with curved edges:279

φp,j =

([
2x̃xh̃b
w̃w

]p
+

[
ỹyh̃b

h̃p

]p) 1
p

. (9)

The sharpness of the corners is controlled by the parameter p and set to 10 in this280

study. The petal length, h̃p, is defined as:281

h̃p = h̃t − h̃b. (10)

The width of the cuboid, w̃w, varies in radial direction, i.e. ỹ′, as follows:282

w̃w = w̃′p +
π

Np − 1

(
ỹ′ − h̃b

)
. (11)

Note that the maximum width depends on the number of petals Np. The axil-283

lary coordinates x̃x and ỹy introduced in (9) are defined as functions of the local284

coordinates x̃′ and ỹ′:285

x̃x = x̃′ − sign
(
−x̃′

)
ã w̃w sin

(
3

2
π

1

h̃p

(
ỹ′ − h̃b

))
, (12)

286

ỹy = ỹ′ − h̃b . (13)

The sine function in (12) defines the curvature of the cuboid edges.287
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3.2 Topology Optimization288

To allow for the emergence of a larger set of geometries in the optimization process,289

the LSF is parametrized by local shape functions defined on a finite element mesh.290

While this mesh may differ from the XFEM mesh to predict the temperature and291

flow fields, for simplicity we use the XFEM mesh for parameterizing the LSF in292

this study.293

We assign one optimization variable, si, i = 1 . . . Nn to each node of the XFEM294

mesh, where Nn is the number of nodes. The LSF value of the i-th node, φi, is295

defined by an explicit function of the optimization variables as follows:296

φi =



Nn∑

j=1

wij



−1

Nn∑

j=1

wijsj , (14)

where297

wij = max (0, (rf − |xi − xj |)) , (15)

and rf is the prescribed filter radius. The filter (14) accelerates the convergence of298

geometry in the optimization process and may promote (but does not guarantee)299

smooth shapes of the phase boundaries; see, for example, Kreissl and Maute (2012).300

Numeric experiments have shown that filter radii of 2.0 − 4.0 times the element301

width to yield an effective and efficient smoothing of nodal design variables. Within302

this range the optimization results do not depend noticeably on choice of rf .303

3.3 Feature Size Control304

To discourage the formation of small, sub-element-size features and to control the305

slope of the LSF near the fluid-solid interface, we introduce the following measure306

of the spatial LSF gradients:307

G =

∫
e−α

2

(|∇φ| − dφp)2 dΩ with α = ep
φ

∆φ
, (16)

where ep is the penalization parameter, dφp the desired level set gradient, and ∆φ308

the range of the level values in the design domain, defined as:309

∆φ = φmax − φmin. (17)

The gradient measure (16) consists of two terms: The first term becomes van-310

ishingly small far from the zero level set contour and unity nearby; the second311

term is zero when the level set gradient is equal to the prescribed value. The com-312

bination of these two terms penalizes level set gradients that do not match the313

desired value, dφp, along the fluid-solid interface. The value of dφp is typically set314

to unity to promote uniformly scaled shape sensitives along the phase boundaries;315

see, for example, Burger and Osher (2005) and van Dijk et al (2013). This func-316

tionality of the gradient measure is similar to the one of re-initialization schemes317

often used in traditional LSMs, which advance the design via the solution of the318

Hamilton-Jacobi equation.319

The authors have recently shown that the gradient measure (16) can be also320

used to discourage the formation of sub-element-size featured when combined with321
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Fig. 3: LSF gradient measure concept, dotted line showing insufficient gradient.

properly selected upper and lower bounds on the optimization variables (Coffin322

and Maute, 2015). This concept is illustrated in Figure 3. Restricting the level set323

values to ±hele/2, where hele is the element size, the minimum feature size is h if324

the gradient of the LSF is one. The reader is referred to Coffin and Maute (2015)325

for further details. In Section 5, an upper limit on the gradient measure (16) is326

imposed to regularize the optimization problems.327

4 Analysis328

The main challenge in optimizing the topology of natural convection problems is329

the modeling and numerical prediction of the temperature and flow fields. In this330

section, we present the weak form of the governing equations, outline the spatial331

and temporal discretization schemes, and summarize the main steps of the adjoint332

sensitivity analysis.333

4.1 Governing Equations334

In this study, we describe natural convection flows by coupling an advection-335

diffusion equation, which describes the transport of thermal energy, and the incom-336

pressible Navier-Stokes equations, which describe the transport of momentum. The337

buoyancy forces are modeled by the Boussinesq approximation. While this fluid338

model is only valid for low Mach number flows, it describes well a broad range of339

problems relevant for engineering design. The heat transfer in the solid phase is340

described by a linear diffusion model. Fluid and solid models are coupled at the341

fluid-solid interface through temperature and heat flux continuity conditions. The342

residual weak form of the governing equations in the fluid and solid phases are343

summarized subsequently.344

4.1.1 Incompressible Navier-Stokes Equations345

The residual of the weak form of the incompressible Navier-Stokes equations, RF ,346

is decomposed into volumetric and surface contributions:347

RF = RFΩ +RFstab +RFΓext +RFΓFS = 0 , (18)
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where RFΩ and RFstab are the residuals of the volumetric non-stabilized and stabi-348

lized contributions, RFΓext is the residual of contribution from external boundaries,349

and RFΓFS is the residual of the fluid-solid interface conditions. The stabilization350

term, RFstab, depends on the discretization scheme and is defined in Section 4.2.351

For the problems considered in this study, the contributions form external bound-352

aries vanish as the fluid velocities are set to zero along the walls enclosing the flow353

domain.354

The non-stabilized volumetric contributions are:355

RFΩ =
∫
ΩF

Ψi ρF
(
∂vi
∂t + vj

∂vi
∂xj

)
dΩ

+
∫
ΩF

1
2

(
∂Ψi
∂xj

+
∂Ψj
∂xi

)
σij (v, p) dΩ

+
∫
ΩF

Ψi ρF gi (1− βF [TF − T0]) dΩ

+
∫
ΩF

η ∂vi
∂xi

dΩ ,

(19)

where vi is the velocity vector, p the pressure, TF the temperature, and σij the356

stress tensor of the fluid. The vector Ψi denotes admissible test functions for the357

momentum equations, and η is the test function of the incompressibility condition.358

The gravity acceleration vector is denoted by gi and T0 is the reference temper-359

ature. In this form the reference temperature drives the magnitude of buoyancy360

force through the entire domain. In a closed box, the magnitude of reference tem-361

perature will lead to changes in the magnitude of mean pressure in the domain362

and will not impact the fluid flow velocities. The fluid stress is defined as:363

σij (v, p) = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (20)

where µ is the dynamic viscosity of the fluid.364

We enforce weakly the stick condition at the fluid-solid interface by a Nitsche’s365

method (Nitsche, 1975). The formulation adopted here is described by Schott et al366

(2014) and is written as:367

RFΓFS = −
∫
ΓFS

Ψi σij (v, p) nFj dΓ

−
∫
ΓFS

σij (Ψ, η) vi n
F
j dΓ

+γF
∫
ΓFS

Ψi vi dΓ ,

(21)

where nFj is the normal on the interface pointing into the solid phase and γF is a368

penalty parameter.369

4.1.2 Advection-Diffusion Equation370

The energy transport in the fluid phase is described by an advection-diffusion371

equation. Setting the advective velocity to zero, this equation simplifies to a diffu-372

sion equation which is used to model the conduction in the solid phase. Similar to373

the Navier-Stokes equations discussed previously, the weak form of the advection-374

diffusion equation is decomposed into volumetric and surface contributions as fol-375

lows:376

RTP = RTPΩ +RTPstab +RTPΓext +RTPΓFS = 0 , (22)
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where P denotes the phase, i.e. fluid or solid. The stabilized volumetric contribu-377

tion, RTPstab, is discussed in Section 4.2. The non-stabilized volumetric contribution,378

RTk,Ω , is:379

RTPΩ =
∫
ΩP

ζP ρP cp,P
(
∂TP
∂t + vPj

∂TP
∂xj

)
dΩ

+
∫
ΩP

∂ζP
∂xi

JPi (TP ) dΩ ,
(23)

where ζP is an admissible test function and JPi the diffusive heat flux. Note the380

advective velocity vPi is the fluid velocity vi in Ωk = ΩF and vanishes in the solid381

phase. Assuming isotropic diffusion in both fluid and solid phase, the heat flux is:382

JPi (TP ) = κP
∂TP
∂xi

. (24)

The contribution from the external boundaries, RTPΓext , is due to applied heat sur-383

face fluxes and is defined as:384

RTPΓext =

∫

Γ qP

ζP qP dΓ , (25)

where Γ qP denotes the surface of phase P at which the surface flux qP is applied.385

The continuity of the temperature field and the surface fluxes at the fluid-solid386

interface is enforced weakly using Nitsche’s method. Following the work of Dolbow387

and Harari (2009), the surface contributions RTF and RTS are defined through the388

following integrals:389

RTF +RTS = −
∫
ΓFS
〈ζ〉 {Ji (TF , TS)} nFi dΓ

−
∫
ΓFS
{Ji (ζF , ζS)} nFi 〈T 〉 dΓ

+γT
∫
ΓFS
〈ζ〉 〈T 〉 dΓ ,

(26)

with390

〈z〉 = zF − zS and {Ji (zF , zS)} = wF JFi (zF ) + wS JSi (zS) , (27)

where γT is a penalty parameter and wF and wS are weights such that wF +wS =391

1.392

4.2 Spatial Discretization393

The governing equations in the fluid and solid phase are discretized in space by the394

XFEM. The XFEM augments the standard finite element interpolation by addi-395

tional enrichment functions to capture discontinuities in either the state variables396

or their spatial gradients within an element. Depending on the type of disconti-397

nuity, different enrichment schemes are applied (Fries and Belytschko, 2010). The398

particular approach used in this study is adopted from Makhija and Maute (2014),399

Kreissl and Maute (2012), Lang et al (2014), Makhija and Maute (2015), who400

considered linear elastic, incompressible Navier-Stokes, diffusion, and advection-401

diffusion problems, respectively.402

The XFEM is used to approximate the fluid velocity and pressure fields as well403

as the temperature fields in the solid and fluid phases within finite elements that404
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are intersected by the fluid-solid interface, i.e. the zero level set iso-contour. With405

u representing one of these state variables, a Heaviside enrichment strategy is used406

to discretize the governing equations. The approximation of u within an element,407

û, is defined as:408

û(x) =
M∑
m=1

(
H(−φ̄(x))

∑
i∈I

Ni(x) δi,Fmk u
F
i,m

+H(φ̄(x))
∑
i∈I

Ni(x) δi,Smn u
S
i,m

) (28)

where I is the set of all elemental nodes, Ni(x) the nodal basis functions, M409

the number of enrichment levels, and uFi,m and uSi,m are the degrees of freedom410

of enrichment level m at node i in the fluid and solid phases, respectively. To411

satisfy the partition of unity principle, no more than one degree of freedom per412

node is used to interpolate the solution at a point in the element. The active413

degrees of freedom at the i-th node are denoted by k and n in fluid and solid414

phases, respectively, and δi,Pab for P = [F, S] is the Kronecker delta. The Heaviside415

function, H(z), turns on and off the interpolation for the particular phase and is416

defined as:417

H(z) =

{
1 z > 0
0 z ≤ 0

. (29)

For each phase, multiple enrichment levels, i.e. sets of shape functions, may be418

necessary to interpolate the state variables in multiple, physically disconnected419

regions of the same phase; see Makhija and Maute (2014), Terada et al (2003),420

and Tran et al (2011). This generalization prevents spurious coupling between dis-421

connected regions of the same phase. The reader is referred to Makhija and Maute422

(2014) for details on the particular approach used here. To accurately integrate the423

weak form of the static equilibrium equations by Gauss quadrature, intersected424

elements are decomposed into triangles in 2D and tetrahedrons in 3D.425

The convective terms in the incompressible Navier-Stokes and advection-diffusion426

equations may cause spurious node-to-node velocity oscillations. Furthermore, we427

interpolate both the fluid velocity and pressure by bi-linear shape functions in428

2D and tri-linear shape functions in 3D. This equal-order interpolation gives rise429

to spurious pressure oscillations. To prevent these numerical instabilities, we aug-430

ment the incompressible Navier-Stokes by the Streamline Upwind Petrov Galerkin431

(SUPG) and Pressure Stabilized Petrov Galerkin (PSPG) stabilization (Tezduyar432

et al, 1992), yielding the following volumetric contribution to (18):433

RFstab =
∑NF

e
e=1

∫
ΩF,e

(
τvSUPG vj

∂Ψi
∂xj

+ 1
ρF

τPSPG
∂η
∂xi

)
(
ρF
(
∂vi
∂t + vj

∂vi
∂xj

)
− ∂σij(v,p)

∂xj
+ ρF gi (1− βF [TF − T0])

)
dΩ,

(30)
where NF

e denotes the number of elements in the fluid phase. The stabilization434

parameters τvSUPG and τPSPG are given by Tezduyar et al (1992). The advection-435

diffusion equation in the fluid phase is stabilized by the following SUPG term:436

RTFstab =

NF
e∑

e=1

∫

ΩF,e

τTSUPG
ρF cp,F

vi
∂ζ

∂xi

(
ρF cp,F

(
∂TF
∂t

+ vi
∂TF
∂xi

)
− ∂JFi

∂xi

)
dΩ ,

(31)
where the stabilization parameter τTSUPG is defined in Franca et al (1992).437
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4.3 Time Integration Scheme438

The XFEM discretization yields the following semi-discrete form of the governing439

equations:440

Ru (u, u̇) = 0 , (32)

where the vector u collects the degrees of freedom of the fluid velocity, pressure,441

and temperature fields, as well as the temperature field in the solid; its time442

derivative is denoted by u̇. We discretize the governing equations in time by an443

implicit Euler backward scheme:444

u̇(n) =
u(n) − u(n−1)

∆t(n)
, n = 1 . . . Nt , (33)

where n is the time index, ∆t(n) the time step size, and Nt the number of time445

steps.446

At time step n = 0, the initial conditions, u0, are satisfied for all state variables447

such that:448

R(0)
u = u(0) − u0 . (34)

For all time steps n > 0, the equilibrium at the time step (n) is satisfied by solving449

the nonlinear system R
(n)
u = 0 via Newton’s method. To this end the system is450

linearized at u(n), yielding the following contributions to the Jacobian:451

J
(n)

u(n) =
∂R

(n)
u

∂u(n)

∣∣∣∣∣
u(n)

+
∂R

(n)
u

∂u̇(n)

∣∣∣∣∣
u(n)

1

∆t(n)
(35)

Note that due to the SUPG and PSPG stabilization terms, the second term in452

the above equation depends on the solution u(n). We compute derivatives in (35)453

based on the analytically differentiated finite element formulations.454

4.4 Sensitivity Analysis455

The objective functions considered in this study can be written in discretized form456

as:457

Z =

N2
t∑

n=N1
t

z(n)
(
s,u(n)

)
, (36)

where the time steps N1
t and N2

t correspond to the times interval [t1, t2] defined458

in (4). The derivatives of the objective function with respect to the optimization459

variables are computed by the adjoint method. To this end, we adopt the discrete460

formulation for nonlinear fluid and coupled systems of Kreissl and Maute (2011)461

and Golmon et al (2012). The main steps of the computational procedure are462

summarized subsequently.463

The derivative of the objective function with respect to the optimization vari-464

able si is decomposed into an explicit and an implicit term such that:465

dZ

dsi
=
∂Z

∂si
+

N2
t∑

n=N1
t

∂z(n)

∂u(n)

T
∂u(n)

∂si
. (37)
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The explicit term is evaluated by differentiating Z first with respect to the nodal466

level set values, φj . For convenience these derivatives are evaluated by finite dif-467

ferences. The resulting vector, (∂Z/∂φj), is then post-multiplied by the derivative468

of the nodal level set values with respect to the optimization variables, (∂φj/∂si),469

differentiating the explicit expressions introduced in Sections 3.1 and 3.2. The470

same procedure is used to compute the derivatives of the constraints in (4), as471

they do not depend on the state variables in this study.472

The implicit term in (37) is computed by the adjoint method as follows:473

N2
t∑

n=N1
t

∂z(n)

∂u(n)

T
∂u(n)

∂si
=

N2
t∑

n=0

λ(n)
T ∂R

(n)
u

∂si
, (38)

where λ(n) are the adjoint states at time step n. Note that the scalar product474

of the adjoint vector and the derivative of the residual R
(n)
u is summed from the475

initial time step through n = N2
t . The adjoint state are computed by integrating476

the adjoint equations backward in time as follows:477

(
J
(n)

u(n)

)T
λ(n) = − ∂z(n)

∂u(n)

+ 1
∆t(n+1)

∂R(n+1)
u

∂u̇(n+1)

∣∣∣
T

u(n+1)
λ(n+1) ,

(39)

for n = N2
t . . . 0 and λ(N

2
t+1) = 0. In this work, we compute the derivative of the478

objective function components with respect to the state variables, ∂z(n)/∂u(n),479

analytically. The derivatives of the residual with respect to the design variables,480

∂R
(n)
u /∂si, are computed by finite difference. Note that only the residuals of inter-481

sected elements need to be considered as the derivatives of non-intersected elements482

vanishes.483

The differentiation of the residual of intersected elements with respect to the484

optimization variables deserves particular attention. The derivative of an elemental485

residual, Rne , at time step n can be conveniently decomposed as follows:486

∂Rne
∂si

=

Ne
n∑

j=1

NΓ
n∑

k=1

∂Rne
∂xΓk

∂xΓk
∂φj

∂φj
∂si

, (40)

where Ne
n is the number of nodes and NΓ

n the number of intersection points per487

element. The first term in the double sum of (40) describes the change of the488

elemental residual due to a change in the interface geometry which is defined by489

the position, xΓk , of the intersection points along the element edges; see Section490

3. The second term represents the dependence of xΓk on the level set value, φj ,491

at the finite element nodes. The last term captures the explicit dependence of492

φj on the optimization variables. The decomposition (40) illustrates clearly that493

the proposed LSM essentially uses shape derivatives to update the design in the494

optimization process.495

Assuming that φj(si) is smooth, the partial derivatives in (40) exist for all496

values of si, except for φj = 0. In this case, for an infinitesimal perturbation of497

φj , edge intersection points may emerge or vanish and a subset of degrees for498

freedom, uPi,m with P = [F, S], may become active or inactive, as defined by the499

Kronecker delta, δi,Pab , in (28). To mitigate these issues, we construct the nodal500
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Fig. 4: Configurations of the design problem in (a) two and (b) three dimensions.

level set values such that ‖φj‖ > 0; see Section 3. Furthermore, we evaluate the501

derivative
(
∂Rne /∂xΓk · ∂xΓk /∂φj

)
in the direction which does not alter the sign of502

φj . In this work, we compute
(
∂Rne /∂xΓk · ∂xΓk /∂φj

)
by a finite difference method.503

If the sign of a nodal level set value does change due to perturbation ±∆φj , a504

central difference scheme is chosen; otherwise a forward or backward difference505

scheme is used, depending on the perturbation direction that does not yield a506

sign change. Numerical studies for a broad range of problems rendered this finite507

differencing approach sufficiently accurate and computationally efficient.508

5 Example Problems509

In this work we study the characteristics of the proposed LSM approach for steady-510

state problems in 2D and 3D. A transient problem is studied in 2D only due to511

constraints on computational resources.512

The configurations of the 2D and 3D design problems are shown in Figure 4.513

In 2D the design domain is a rectangle of width w and height h. In 3D a cylinder514

of diameter w and height h forms the design domain. In both configurations, a515

heat flux qB is applied at point B which is guaranteed to be surrounded by a516

sphere of solid phase with radius rBS . The temperature on the top surface of the517

design domains is fixed to T0. The side and bottom walls are adiabatic. The fluid518

velocity at the walls and the fluid-solid interface is zero. We assume the properties519

of air for the fluid phase and the ones of aluminum for the solid phase. The520

material parameters are summarized in Table 1. The magnitude of the heat flux521

and the dimensions of the design domains are varied to yield either a steady-state522

or transient flow response.523

The goal of the design problem is to find the geometry of an internal solid524

structure such that the average temperature at point B, TB , within the time525
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Table 1: Material properties for example problems.

Value

Gravity g = 9.81m
s2

Volumetric thermal expansion αTE = 3.43 × 10−3 1
K

Fluid dynamic viscosity µF = 1.511 × 10−5Pa · s
Fluid density ρF = 1.205.0 kg

m3

Fluid specific heat cp,F = 1005.0 J
kgK

Fluid diffusivity κF = 0.0257.0 W
mK

Solid density ρS = 2700.0 kg
m3

Solid specific heat cp,S = 910.0 J
kgK

Solid diffusivity κS = 237.0 W
mK

Reference temperature T0 = 1.0K

[t1, t2] is minimum. To prevent the trivial solution of an all solid design domain, the526

volume of the solid phase, VS , is constrained to be less than or equal to a maximum527

volume, cv. To promote smooth shapes and to discourage the formation of small528

geometric features, we impose a constrained on the perimeter, with cpe denoting529

the maximum feasible perimeter. To suppress the formation of sub-element-size530

features, we also impose a constraint on the level set gradient measure described531

in Section 3.3, with cg being the upper limit. This optimization problem can be532

written as follows:533

mins Z = 1
N12
t

∑N2
t

n=N1
t
T

(n)
B ,

s.t. VS − cv ≤ 0

P − cpe ≤ 0

G− cg ≤ 0

s ∈ S =
{
RNs |sLi ≤ si ≤ sUi , i = 1....Ns

}
,

(41)

where N12
t = N2

t − N1
t is the number of time steps in the time interval of inter-534

est. For steady-state problem, N12
t = 1. Numerical studies have shown that the535

constraint on the gradient measure is only needed for the 3D problem considered536

here. Therefore, this constraint is omitted for the 2D problems.537

The design domains are discretized in space by bilinear quadrilateral elements538

(2D) and hexahedral, trilinear elements (3D). To enforce the stick condition at539

the fluid-solid interface we set the fluid penalty parameter to γF = 104; see (21).540

To enforce the temperature continuity the temperature penalty parameter is set541

to γT = 100.0 and the flux averaging weights to wS = wF = 0.5; see (26) and542

(27). For the transient case, the flow and temperature fields are advanced in time543

by an implicit Euler backward scheme; see Section 4.3. The resulting systems544

of nonlinear residual equations are solved by a damped Newton-Raphson method.545

The linear sub-problems of both the forward and the sensitivity analysis are solved546
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by either a sequential or parallel direct solvers, depending on the problem size. We547

use UMFPACK for 2D problems and MUMPS for the 3D problem (Davis, 2004;548

Amestoy et al, 1998).549

The Globally Convergent Method of Moving Asymptotes (GCMMA) of Svan-550

berg (2002) is used to solve the optimization problem. The GCMMA parameters551

are: relative step size, 0.01; minimum asymptote adaptivity, 0.5; initial asymptote552

adaptivity, 0.7; maximum adaptivity, 1.43; and constraint penalty, 50. The opti-553

mization problem is considered converged if the change of the objective function554

relative to the initial objective value is less than 10−6 and the constraints are555

satisfied.556

The numerical studies presented in the remainder of this section are organized557

as follows: First we study a steady-state configuration in 2D, restricting the de-558

sign freedom to a petal geometry. This study illustrates the influence of imposing559

symmetry conditions on the design. The same configuration is considered with a560

finite element discretization of the level set function, illustrating the influence of561

the increased design freedom and the choice of the initial design. A 2D configu-562

ration yielding unsteady flow is then considered to understand the influence of a563

sup-critical Grashof number on the resulting design geometry. Finally, a 3D steady564

state design problem is considered.565

To characterize the flow and temperature fields of the initial and optimized de-566

signs, we report on the Rayleigh and Grashof numbers as well as on the maximum567

local Reynolds number. The domain height is used as the characteristic length, Lc;568

the maximum difference between the temperature at the top surface and at point569

B, i.e. TB−T0, over all time steps is used as characteristic temperature difference,570

∆T . The local Reynolds number is computed with respect to the maximum local571

fluid velocity, i.e. vc = maxΩF |v|.572

5.1 2D Petal Geometry Optimization573

First, we restrict the design freedom to the petal geometry described in Subsection574

3.1 and perform parametric optimization to understand the main characteristics575

of the design problem. In particular, we study the influence of imposing symmetry576

conditions on the design. To this end, we consider three variations of a 5-petal577

layout. In option O1, we enforce the same geometry for each individual petal578

yielding a total of four optimization variables: h̃b, h̃t, w̃p and ã. For option O2,579

we only enforce symmetry about the vertical axis. Using a uniform base height for580

all petals, option O2 yields 1 + 3× 3 optimization variables. Finally, in option O3,581

each petal is allowed a unique geometry, yielding 1 + 5× 3 optimization variables.582

The initial design for all configurations is shown in Figure 5. The initial values and583

the upper and lower bounds of the design parameters are given in Table 2. Note584

that these bounds allow the petals to overlap and thus the topology to change in585

the optimization process.586

The dimension of the design domain and the magnitude of the heat flux is587

chosen such that a stable steady-solution of the natural convection problem exists588

throughout the optimization process. At the initial design, the Rayleigh number589

is Ra = 6, 050, the Grashof number Gr = 10, 200, the maximum local Reynolds590

number Remax = 10.0. The problem parameters are summarized in Table 3.591
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Fig. 5: Initial design for 2D petal geometry optimization.

Table 2: Initial values and bounds of design parameters for 2D petal geometry
optimization.

Value Initial Minimum Maximum

Base Length, h̃b 0.21 0.15 0.25

Total Length, h̃t 0.31 0.0 0.9
Petal Width, w̃p 0.21 0.0 0.9
Side Variation, ã 0.0 −0.4 0.4

Table 3: 2D optimization parameters.

Parameter Value

Domain height h = 0.030m

Domain width w = 0.030m

Number of elements 80 × 80 = 6400

Heat flux qB = 5.000 × 10−2W

Volume constraint cv = 3.93 × 10−5m3

Perimeter constraint cpe = 3.14 × 10−2m2

Temperature contour plots with stream lines of the final designs of the three592

options O1-3 are shown in Figure 6. The temperatures at point B, the volume,593

and the perimeter of the optimized designs are given in Table 4. The diffusive and594

convective contribution to the total heat transport are shown in Figure 7. The595

diffusive flux, Jdiff , in the fluid domain is defined as:596

Jdiffi = −κF
∂T

∂xi
, (42)

while the advective flux, qadv, is defined as:597

Jadvi = cp,F ρF ∆Tvi, (43)
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Fig. 6: Temperature contour plots with streamlines of the final designs for petal
geometry optimization: option O1 (left), O2 (middle), O3 (right).

Table 4: 2D petal geometry optimization results.

Design Initial Design Option O1 -
Final Design

Option 02 -
Final Design

Option O3 -
Final Design

TB [K] 2.77 2.68 2.43 2.29
Volume [m3] 2.22 × 10−5 3.81 × 10−5 3.93 × 10−5 3.92 × 10−5

Perimeter [m2] 2.44 × 10−2 3.14 × 10−2 3.14 × 10−2 3.12 × 10−2

Rayleigh 6.05 × 103 5.72 × 103 4.89 × 103 4.39 × 103

Grashof 1.02 × 104 9.68 × 103 8.27 × 103 7.44 × 103

Local Reynolds 1.00 × 101 7.78 4.92 1.68 × 101

where ∆T is the difference between the local, T , and reference, T0, temperatures.598

Since the convective flux increases with the area of the fluid-solid interface,599

the perimeter of all designs is either equal or close to the maximum feasible value.600

Similarly, the designs take up (almost) all of the allowable solid volume in order601

to extend the solid phase toward the cold top surface. As expected, the objective602

improves, i.e. the temperature TB decreases, with increasing design freedom. Op-603

tion O3 takes advantage of the design freedom and yields an asymmetric design,604

although the setup of the design problem is symmetric. Comparing the heat flux605

contributions of the optimized designs suggests that the asymmetric design so-606

lution increases in particular the convective energy transport. The differences in607

convective flux are also reflected in the differences in the flow velocities shown in608

Figure 8. As the Rayleigh number of the problem is lowered the benefits from an609

asymmetric design decrease and the optimization process converges to a symmet-610

ric design. This tendency was observed when lowering the product (ρF cp,F ) by a611

factor 1000.0; the results of this study are not shown here as they do not provide612

fundamentally new insights.613
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Fig. 7: Diffusive (top) and advective (bottom) fluxes for petal geometry optimiza-
tion: option O1 (left), O2 (middle), O3 (right).

Fig. 8: Magnitude of fluid velocities for petal geometry optimization: option O1
(left), O2 (middle), O3 (right).
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Fig. 9: Temperature contour plots with streamlines of initial designs for 2D steady-
state topology optimization: circular (left) and inclusions (right).

5.2 2D Steady-State Topology Optimization614

We consider the same steady-state configuration of Section 5.1 but now study615

a finite element parameterization of the level set function; see Section 3.2. We616

compare the optimization results for a symmetric and non-symmetric problem617

setup. To study the influence of the initial design on the optimization results, we618

consider the two initializations of the level set function shown in Figure 9: one619

consisting of a simple half-circle of radius 0.005, the second imposing a grid of620

cuboid fluid inclusions over the same solid circle.621

The problems parameters are given in Table 3. The radius of the circle of solid622

phase around point B is rBS = 10−3 m. The smoothing radius of the linear filter623

(15) is rf = 1.440 × 10−3 m. To enforce a symmetric design we define the nodal624

level set functions at corresponding nodes by the same optimization variables.625

For the initial half-circle design the Rayleigh number is Ra = 5, 900, the626

Grashof number Gr = 9, 900, and the maximum local Reynolds number Remax =627

9.0; for the the half-circle with inclusions the Rayleigh number is Ra = 6, 000,628

the Grashof number Gr = 10, 000, and the maximum local Reynolds number629

Remax = 9.6. The values are indicative of a steady state flow for the initial de-630

signs.631

Figure 10 shows temperature contour plots with streamlines of the optimized632

designs for the different initial designs and design symmetry conditions. Values633

for the temperature TB , solid volume, and perimeter are given in Tables 5 and634

6. Independent of the initial design the optimization process converges to equiva-635

lent solutions. Similar to the petal problem studied above, the asymmetric design636

yields the lowest objective temperature. Again, the asymmetric design features637

substantially higher advective heat transport due to large flow velocities above638

the solid structure; see Figures 11 and 12.639
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Fig. 10: Temperature contour plots with streamlines of the final designs for 2D
steady-state topology optimization: circular initial design (top), inclusion initial
design (bottom); free geometry (left), symmetric geometry (right).

Table 5: 2D steady-state topology optimization results for circular initial design.

Design Initial Design Final design
(symmetric)

Final design
(non-symmetric)

TB [K] 2.71 2.26 2.16

Volume [m3] 3.87 × 10−5 3.93 × 10−5 3.93 × 10−5

Perimeter [m2] 1.56 × 10−2 3.14 × 10−2 3.14 × 10−2

Rayleigh 5.85 × 103 4.30 × 103 3.96 × 103

Grashof 9.90 × 103 7.27 × 103 6.70 × 103

Local Reynolds 8.99 5.27 1.85 × 101
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Table 6: 2D steady-state topology optimization results for initial design with in-
clusions.

Design Initial Design Final design
(symmetric)

Final design
(non-symmetric)

TB [K] 2.75 2.26 2.16

Volume [m3] 2.84 × 10−5 3.93 × 10−5 3.92 × 10−5

Perimeter [m2] 2.52 × 10−2 3.14 × 10−2 3.14 × 10−2

Rayleigh 5.99 × 103 4.30 × 103 3.95 × 103

Grashof 1.01 × 104 7.27 × 103 6.69 × 103

Local Reynolds 9.55 5.27 1.83 × 101

5.3 2D Transient Topology Optimization640

Ensuring a steady-state flow for all designs throughout the optimization process641

imposes severe limitations on the class of optimization problems that can be con-642

sidered. The proposed optimization framework allows for problems where the flow643

exhibits a transient response. To illustrate this capability, we consider a configu-644

ration similar to the one studied previously, but we increase the magnitude of the645

external heat flux by a factor 1, 000 and the dimensions of the design domain three-646

fold. These modifications cause the flow to exhibit dynamic instabilities. Starting647

from a design domain of temperature T0 and the fluid being at rest, the transient648

analysis is advanced in time until the temperature at point B reaches a quasi-649

steady-state, i.e. the temporal variations are much smaller than the average. Note650

the flow remains unstable and does not converge to a steady-state. The objective651

is the temperature averaged over the last N12
t time steps.652

We parameterize the level set function by the XFEM mesh and enforce a653

symmetric design by defining the nodal level set functions at corresponding nodes654

by the same optimization variables. The smoothing radius of the linear filter (15)655

is rf = 1.44× 10−3m. As in the previous topology optimization study, the radius656

of the circle of solid phase around point B is rBS = 10−3 m. The upper limits for657

the volume and perimeter constraints also remain the same.658

The problem parameters are summarized in Table 7. Note the large number of659

time steps needed to reach a quasi-steady-state response at point B. This is due660

to the significantly different time scales dominating the flow field and the thermal661

response in the solid. The time step size is driven by the requirement to resolve662

the transient fluid response while the total simulation time needs to be sufficiently663

large such that temperature field in the solid converges. The appropriate time664

steps size, ∆t, the total number of time steps, N2
t , and the number of time steps665

for averaging the objective temperature, N12
t , were determined through numerical666

studies on the initial design.667

To reduce the computational effort, we initialize the level set field with the668

symmetric design found for the steady-state case described previously. Snapshots669

of the temperature contours with stream lines of the initial and optimized designs670
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Fig. 11: Advective (bottom) and diffusive (top) of non-symmetric (left) and sym-
metric (right) designs.

are shown in Figure 13. For the both designs the flow develops a long, thin column671

that oscillates horizontally as the vortices at the top of the design domain move672

up and down. While the initial and optimized designs have the same topology, the673

transient optimum features a more bulbous tip compared to straight fin obtained674

for the low Grashof number, steady-state design.675

The evolutions of the temperature at point B are shown in Figure 14 for the676

initial and final designs. For both configurations, the temperature reaches a quasi-677

steady-state. The average temperature at point B, the solid volume, the perimeter678

and the non-dimensional numbers characterizing the flow fields of the initial and679

final designs are given in Table 8. Note that the Rayleigh and Grashof numbers680

for the initial and optimized design are indicative of an unstable, transient flow.681
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Fig. 12: Magnitude of fluid velocities of non-symmetric (left) and symmetric (right)
designs.

Table 7: 2D transient topology optimization parameters.

Parameter Value

Domain height h = 0.090m

Domain width w = 0.090m

Number of elements 6400

Heat flux qB = 5.0 × 101W

Volume constraint cv = 3.93 × 10−5m3

Perimeter constraint cpe = 3.14 × 10−2m2

Time step size ∆t = 1.0s

Total number of time steps N2
t = 2.5 × 103

Number of averaging time steps N12
t = 100

The transient optimum reduces the mean temperature by 7 % in comparison682

to the steady-state design which is optimized at much lower Grashof number.683

Analyzing the design optimized for the transient case at the configuration de-684

fined in Section 5.2, which yields a steady-state flow, the objective temperature is685

TB = 2.26 K which is 0.2 % larger than the one of the symmetric steady-state de-686

sign. This analysis illustrates the importance of optimizing the design for specific687

operating conditions and the resulting flow regimes.688

Accounting for the (potentially) transient behavior of natural convection prob-689

lems in the approach allows for the consideration of a larger range of Rayleigh and690
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(a) Initial design (b) Final design

Fig. 13: Snapshot of temperature contours with streamlines for 2D transient topol-
ogy optimization.
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Fig. 14: Temperature TB plotted over time for initial and final designs of 2D
unsteady topology optimization problem.

Grashof numbers and increases confidence in the accuracy of the flow and thermal691

analysis. However, these advantages come at significant additional computational692

cost. Due to the serial nature of the time stepping schemes used in both the for-693

ward and sensitivity analyses, the computational cost per optimization iteration694

increases linearly with the number of time steps required. Owing to the time scales695

dominating the flow and thermal responses, a large number of time steps is needed696

to reach a quasi-steady-state response in the solid phase. In addition, a rather fine697

mesh is required to resolve spatially the flow. Here the XFEM model yields about698

25, 000 degrees of freedom; the exact number depends on the intersection configu-699

ration. The total time for a forward and sensitivity analysis was approximately 2700
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Table 8: 2D unsteady topology optimization results.

Design Initial Design Final design

mean(TB) [K] 1.74 × 102 1.61 × 102

Volume [m3] 3.83 × 10−5 3.89 × 10−5

Perimeter [m2] 3.01 × 10−2 3.46 × 10−2

Rayleigh 1.60 × 107 1.48 × 107

Grashof 2.70 × 107 2.50 × 107

Local Reynolds 2.70 × 103 2.69 × 103

hours, using MUMPS for solving the linear sub-problems on a desktop computer701

with a six-core AMD Phenom II 1090T 3.2GHz processor and 8GB of RAM. For702

the total of 150 optimization iterations, 12 days’ worth of computational time was703

required. To reduce the computational costs more advanced time integration ap-704

proaches could be incorporated. Alternative spatial discretization schemes, such705

as finite volume or discontinuous Galerkin methods, may also increase the compu-706

tational efficiency.707

5.4 3D Steady-State Topology Optimization708

Finally, we demonstrate that the proposed optimization framework is also ap-709

plicable to natural convection problems in three dimensions. Due the significant710

computational costs of solving transient problems, we limit this study to a low-711

Grashof number configuration which guarantees steady-state solutions throughout712

the optimization process.713

The natural convection problem of Section 5.2 is extended to three dimensions714

by rotating the design domain about the center as shown in Figure 4. The problem715

parameters are given in Table 9. The radius of the sphere of solid phase around716

point B is rBS = 2.5 × 10−3 m. The smoothing radius of the linear filter (15) is717

rf = 1.069×10−3 m. We enforce a double-symmetric design by defining the nodal718

level set functions at corresponding nodes by the same optimization variables. A719

layer of fluid material, 0.02 m thick, is prescribed at the top surface of the design720

domain to prevent the design from interacting with the boundary condition applied721

there.722

As in the previous studies we impose constraints on the maximum solid vol-723

ume and the perimeter. Numerical studies on the 3D configurations showed that724

small, sub-element-size features may emerge, causing the optimization process to725

stagnate. To suppress these features, we additionally impose a constraint on the726

level set gradient measure (16). The constraint limit is set initially to a rather727

large value which does not prohibit geometric features from merging. As the de-728

sign converges the constraint values is lowered to remove sub-element-size features.729

A constraint of cg = 1.0× 10−7 is prescribed for 300 optimization iterations, then730

lowered to cg = 1.0× 10−9 for another 300 iterations.731
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Table 9: 3D box topology optimization parameters.

Parameter Value

Domain height h = 0.030m

Domain width w = 0.030m

Number of elements 51680

Heat flux qB = 3.333 × 10−4W

Volume constraint cv = 5.24 × 10−7m3

Perimeter constraint cpe = 4.7 × 10−4m2

Gradient constraint cg = [1.0 × 10−7, 1.0 × 10−9]m

(a) Initial design (b) Final design

Fig. 15: Results for 3D box design problem.

We start the optimization process with a cylindrical solid phase of radius732

0.003 m and height 0.005 m; a semi-sphere is placed at the top of the cylin-733

der. The flow field of the initial design is characterized by a Rayleigh number of734

Ra = 2000, a Grashof number of Gr = 3400, and a maximum local Reynolds num-735

ber of Remax = 5.0. These numbers are similar to the ones of the configuration in736

Section 5.2 and indicative of a steady-state flow.737

The streamlines for the initial and optimized designs are shown in Figure 15.738

The performance and flow characteristics are given in Table 10. The geometry739

of the 3D optimum deviates noticeably from the solution of the 2D steady state740

problem. While similar to the 2D solution the 3D design consists of a thin base,741

it splits into four branches in the top half, shown in Figure 15 (b). The 3D con-742

figuration appears to promote thinner features necessitating some form of feature743

size control; here implemented via a constraint on the level set gradient measure.744
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Table 10: 3D topology optimization results.

Design Initial Design Final design

TB [K] 1.59 1.18

Volume [m3] 1.89 × 10−7 1.46 × 10−7

Perimeter [m2] 1.47 × 10−4 3.81 × 10−4

Rayleigh 2.01 × 103 5.99 × 102

Grashof 3.41 × 103 1.01 × 103

Local Reynolds 4.97 2.54 × 10−1

This study demonstrates the applicability of the proposed optimization frame-745

work to 3D natural convection problems. However, we point out that the numerical746

and computationally complexity in solving the forward problem and the overall747

optimization problem is significantly increased over 2D problems. This includes the748

numerical stability of the XFEM formulation, in particular the treatment of the749

interface conditions, as well as the complexity of solving large nonlinear problems.750

The increased design freedom in 3D allows the emergence of complex geometries751

for which it is difficult to robustly compute flow solutions using uniformly refined752

meshes that are not altered in the optimization process.753

6 Conclusions754

This study presented an explicit LSM for optimizing the geometry of natural con-755

vection dominated flows. Our approach expands existing density methods onto756

transient problems. The energy transport is described by an advection-diffusion757

model. In the fluid phase, the advective velocity is modeled by the incompressible758

Navier-Stokes equations and the Boussinesq approximation of the buoyancy forces.759

In the solid phase, the advective velocity vanishes. The method relies on a XFEM760

discretization of the governing equations in the fluid and solid phase. The interface761

conditions are enforced weakly using Nitsche’s method. To consider flows exhibit-762

ing dynamic instabilities, the flow and temperature fields are advanced in time by763

an implicit Euler backward time integration scheme. The design sensitivities of764

the steady-state and transient response are computed by an adjoint approach.765

The main characteristics of the proposed method were studied with steady-766

state problems in 2D and 3D and a 2D transient problem. One of the main ad-767

vantages of the LSM approach is that it provides a crisp geometry description768

throughout the optimization process and that it does not suffer from the presence769

of fictitious material in optimized material distribution, as Alexandersen et al770

(2014) reported for density methods. Studies on a 2D steady-state design problem771

illustrated that non-intuitive asymmetric designs feature improved cooling per-772

formance compared to optimized symmetric designs which converged to common773

fin-type shapes.774
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A study on a high-Grashof number configuration demonstrated the applicabil-775

ity of the proposed methods to problems where the flow exhibits dynamic instabil-776

ities and does not converge to a steady state. However, such problems are stymied777

by large computational costs as a fine mesh and small time steps are needed to778

resolve the transient flow and a large number of time steps is required to reach a779

quasi-steady-state thermal response in the solid. The applicability of the proposed780

method to 3D problems was illustrated with a low Grashof steady-state problem.781

For this problem, the need to control the size of geometric features was observed.782

To this end, a constraint on the gradients of the level set field was imposed, along783

with setting appropriate lower and upper bounds on the optimization variables.784

The application of the proposed method to 3D problems is hampered by large785

computational costs.786

The numerical studies have demonstrated the applicability of the proposed787

method to a broad range of natural convection problems, including three-dimensional788

problems and problems with unstable, transient flows. Future studies should focus789

on reducing the computational costs, for example, via adaptive meshing techniques790

and adaptive time stepping schemes. Furthermore, robust and efficient schemes791

need to be developed to impose feature size constraints.792
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Abstract In this paper we seek to control the minimum feature size in geome-7

tries during topology optimization. Control of minimum feature size is important8

to maintaining manufacturability of the geometry and accurate representation of9

it during analysis of the governing equations. The feature size control method10

presented in this work utilizes the eXtended Finite Element Method (XFEM)11

surface representation within a Level Set Method (LSM) and permits sharp cor-12

ners. Some feature size control techniques for Level Set Methods (LSMs) rely on13

sign-distance-like features of the Level Set Field (LSF), which requires a refined14

mesh to ensure accurate geometry representation. Explicit LSMs also do not re-15

tain a sign-distance-like LSF, requiring reconstruction of the field, which may be16

expensive. The other feature size control technique for LSMs, the quadratic en-17

ergy method, compares the interface’s tangent vector at integration points, which18

may be misleading when considering discretized interfaces. The feature size control19

measure developed here identifies violations of a minimum feature size and can be20

incorporated as a penalty or constraint on the optimization problem. The XFEM21

provides a crisp representation of the level set geometry and integration along its22

interface. Two-phase problems are considered and the minimum feature size can23

be prescribed in a single or both material phases. The measure is demonstrated24

on structural and convective heat transfer topology optimization problems. When25

used as a constraint the measure is able to deter the formation of features smaller26

than the prescribed sized. To remove existing small features the constraint is re-27
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placed with a penalty that is applied over a series of steps with increasing feature28

size. The influence of a tuning parameter is demonstrated, changing the curvature29

of resulting designs.30

Keywords Topology Optimization · Level Set Methods · Feature Size Control ·31

eXtended Finite Element Method32

1 Introduction33

Topology optimization has gained traction as a computational design technique34

in recent decades. It is an appealing approach as it minimizes the influence of35

initial designs with its capability to represent large geometry changes in the op-36

timization process. The control of “feature size” or “length scale” is important37

to ensure manufacturability and accurate analysis of functionality. Manufacturing38

methods have limitations on the length scales that they can accurately construct.39

Given these limitations, it may be necessary to incorporate controls on feature40

size to ensure ensure that designs are not overly difficult or costly to construct.41

To accurately predict design performance the mesh used for discretization must42

be sufficiently fine to accurately represent the behavior of all feature sizes of a43

given geometry. Given a particular mesh it is be necessary to control feature size44

to ensure that geometries are accurately represented. Adaptive mesh refinement is45

an alternative approach. As feature sizes approach zero, adaptive mesh refinement46

becomes impractical as well.47

Feature size control techniques have been studied in both density topology48

optimization methods and Level Set Methods (LSMs). Density based topology49

optimization methods describe geometry via a fictitious material, whose density50

or volume fraction is a continuous function of the optimization variables. The51

extrema of the density (typically 0 and 1) represent distinct materials, such as52

void and solid. The mechanical models are then constructed such that material53

properties can be interpolated as a function of the density, the extrema mimicking54

the distinct materials and the intermediate values a mixture of the two.55

Feature size control methods have been studied for density methods, for ex-56

ample: consideration of manufacturing processes (Zhou et al, 2014), projection57

schemes (Guest et al, 2004), local density variation (Poulsen, 2003), robust design58

formulations (Schevenels et al, 2011), medial surface reconstruction (Zhang et al,59

2014) and three-field-schemes (Zhou et al, 2015).60

An alternative approach to the density geometry description are LSMs, where61

the geometric boundaries are defined by the iso-contour of an auxiliary field. These62

methods are advantageous in problems where accurate representation of the in-63

terface is important to the physics modeling (Coffin and Maute, 2015). A recent64

review of LSMs for topology optimization is provided by van Dijk et al (2013).65

Level Set Fields (LSFs) are commonly updated by solving the Hamilton-Jacobi66

equation or an augmentation of it. These are referred to as implicit methods. Ex-67

plicit LSMs, considered here, define the LSF as explicit functions of the design68

variables, the update of the design variables is performed by NonLinear Program-69

ming methods (NLPs). In both methods the spatial gradients of the LSF near the70

material interface influence the scaling of the sensitivities. As the LSF becomes flat71

or steep near the interface the problem can become poorly scaled, leading to con-72

vergence difficulties (van Dijk et al, 2013). Implicit methods typically incorporate73
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(a) Ersatz material repre-
sentation

(b) XFEM representation
showing decomposition for
integration

Fig. 1: Comparison of smeared, ersatz material representation vs XFEM decom-
position.

a reinitialization scheme to retain a sign-distance field. Explicit methods typically74

do not retain a sign-distance field but introduce alternative regularization methods75

to control the spatial gradients of the LSF. Tikhonov regularization or penaliza-76

tion of intermediate LSF fields are common approach for LSF regularization (van77

Dijk et al, 2013).78

Physical models are often incorporated into LSMs in a similar fashion as density79

methods, through material property interpolation. Referred to as Ersatz material80

models, the material properties are interpolated as a function of the material81

volume fraction within a finite element. These methods can suffer from smeared82

interface phenomena or geometric artifacts that affect the resolution and accuracy83

of the finite element model, Figure 1 (a) (van Dijk et al, 2013).84

In this work we consider the eXtended Finite Element (XFEM) to discretize85

the governing equations. This approach has been shown to preserve the crispness86

of the boundary definitions provided by the LSM. A feature of the XFEM is the87

decomposition of intersected elements for accurate integration of those elements88

and the material interface, Figure 1 (b). The decomposition of the element into tri-89

angular (2D) or tetrahedral (3D) subdomains yields a surface mesh that describes90

material interfaces via triangle edges (2D) or tetrahedra faces (3D).91

Multiple approaches have been proposed for feature size identification and con-92

trol in LSMs. These approaches vary in the information that is used to identify93

features. These approaches may take advantage of the existing sign-distance or94

nearly sign-distance function LSF to identify the skeleton of the geometry via its95

curvature (Guo et al, 2014; Xia and Shi, 2015; Allaire et al, 2014; Liu et al, 2015).96

The maintenance or construction of a sign-distance field increases the computa-97

tional cost of these methods. Alternatively the discretized material interface itself98

can also be used to identify features (Chen et al, 2008). Chen et al (2008) and Luo99

et al (2008) compute a quadratic energy function, an integral over the interface.100

The form of this measure and a comparison of it to the measure we present in101

this work is provided in Section 3. All of the measures discussed in the previous102

paragraph are incorporated into the optimization problem as penalties on the ob-103

jective function or constraints. Allaire et al (2014), Guo et al (2014) and Xia and104
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Shi (2015) make clear that construct these scalar penalty or constraint values by105

integrating their point-wise measures of feature size.106

In this work we develop an approach that directly utilizes the XFEM discretized107

interface to ensure a crisp representation of the boundary. This also bypasses the108

need for a sign-distance LSF. Utilizing the XFEM interface additionally allows109

the measure to directly identify the geometry as it is incorporated into the XFEM110

analysis of the governing physics. The measure is constructed to identify violations111

of a prescribed minimum feature size. The measure will be incorporated in the112

optimization problem as a penalty on the objective function or as an inequality113

constraint. This allows the optimization algorithm the most freedom to choose114

designs as compared to methods that incorporate minimum feature size into the115

parameterization of the geometry.116

In Section 2 the LS-XEM that is used to describe geometry and discretize117

the governing equations is described. The minimum feature size measure and its118

incorporation as a constraint is outlined in Section 3. Finally, three design problems119

are studied using the minimum feature size constraint scheme in Section 4 and120

conclusions are presented in Section 5.121

2 Level Set-XFEM122

2.1 Parametrization of Level Set Function123

The geometry of a two-phase design is defined by the LSF, φ(x), where x denotes124

the vector of spatial coordinates. In this work the two phases are either solid and125

void or two different diffusive materials. Considering only two-phase problems,126

only a single LSF function is necessary to describe the spatial distribution of the127

materials as follows:128

φ(x) < 0, ∀ x ∈ Ω1,

φ(x) > 0, ∀ x ∈ Ω2,

φ(x) = 0, ∀ x ∈ Γ12,

(1)

where Ω1 is the volume occupied by the first phase, Ω2 the volume occupied by129

the second phase and Γ12 the interface between the two.130

The level set function can be parameterized in a variety of ways for example, by131

finite element basis functions (Allaire et al, 2004), radial basis functions (Kreissl132

et al, 2011) or spectral basis functions (Gomes and Suleman, 2006). To allow for133

the emergence of a large set of geometries, here the LSF is parameterized by the134

shape functions defined on a finite element mesh. For simplicity we use the same135

mesh for the XFEM and the LSF parameterization, although this is not necessary136

in general.137

Each design variable, si, i = 1 . . . Nn, is assigned to a corresponding node138

in the XFEM mesh, where Nn denotes the number of nodes. The optimization139

variables are smoothed so that the LSF value of the i-th node, φi, is explicitly140

defined by the optimization variables as follows:141

φi =
1

lφ



Nn∑

j=1

wij



−1

Nn∑

j=1

wijsj , (2)
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where142

wij = max (0, (rf − |xi − xj |)) , (3)

and rf is the prescribed filter radius. The value lφ is a scaling to allow design143

variables to remain approximately in the range of [−1, 1] when the LSF is well144

formed. We consider the LSF to be well formed when the magnitude of its gradient145

is approximately 1 near the zero-contour and 0 more than one or two elements146

away from the zero-contour. We set the value of lφ equal to twice the width of an147

element.148

Convergence during the optimization process is accelerated by the filter (2) and149

smoother shapes may be promoted; see, for example, Kreissl and Maute (2012).150

Filter radii of 2.0 − 4.0 times the element width have shown to yield effective151

smoothing and efficient performance in numeric experiments.152

Here, bi-linear and tri-linear shape functions are used for 2D and 3D problems153

to parameterize the LSF. By their construction, these shape functions only allow154

an element edge to be intersected by the phase interface, i.e. φ = 0, at most once.155

This restriction due to parameterization can lead to convergence issues during156

the optimization process if sub-element-size features are desirable. This behavior157

has been discussed in Jenkins and Maute (2015) and Coffin and Maute (2015). A158

regularization scheme to discourage sub-element-size features has been utilized in159

Coffin and Maute (2015). As the scheme is not mesh independent a more advanced160

approach is desired and provides additional motivation for this work.161

2.2 Spatial Discretization162

The governing equations of the problem are discretized in space by the XFEM.163

Standard finite element interpolation is augmented with additional enrichment164

functions so that discontinuities at phase boundaries can be represented. A va-165

riety of enrichment schemes exist to handle different types of discontinuities, for166

example: discontinuities in the state variables or discontinuities in their spatial167

derivatives (Fries and Belytschko, 2010). The Heaviside enrichment scheme, used168

here, has been applied to a variety of problems; see for example, Gerstenberger169

and Wall (2008); Chahine et al (2008). The scheme has been studied in topology170

optimization by Kreissl and Maute (2012) for fluid problems, Lang et al (2014) for171

diffusive problems, and Villanueva and Maute (2014) for solid mechanics, among172

others.173

The XFEM is used to discretize state fields within finite elements that are174

intersected by a phase interface, i.e. the zero level set iso-contour. Finite elements175

that do not contain a phase boundary are discretized using traditional finite ele-176

ment interpolation. Within intersected elements a Heaviside enrichment strategy177

is used. The discretized field, û, is defined as:178

û(x) =
M∑
m=1

(
H(−φ̄(x))

∑
i∈I

Ni(x) δi,Fmk u
F
i,m

+H(φ̄(x))
∑
i∈I

Ni(x) δi,Smn u
S
i,m

) (4)

where I is the set of all elemental nodes, Ni(x) the nodal basis functions, M179

the number of enrichment levels, and u1i,m and u2i,m are the degrees of freedom180
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Fig. 2: Construction of interface geometry for intersected elements.

of enrichment level m at node i in the first and second phases, respectively. At181

any given point, only one degree of freedom per node is used to interpolation182

the solution, ensuring that the partition of unity is satisfied. The indices k and183

n denote the active degrees of freedom for the i-th nodes in the first and second184

phases, respectively. The Kronecker delta is δi,Pab , which selects the degrees of185

freedom for phases P = [1, 2]. The Heaviside function H(z) determines the active186

interpolation for the particular phase and is defined as:187

H(z) =

{
1 z > 0
0 z ≤ 0

. (5)

To ensure that physically disconnected regions of the same phase are properly188

disconnected in the XFEM it is often necessary for multiple enrichment levels,189

i.e. sets of shape functions be used for each state variable. This approach as dis-190

cussed in detail by Makhija and Maute (2014), Terada et al (2003), and Tran et al191

(2011), the particular approach used here being discussed by Makhija and Maute192

(2014).193

Intersected elements are decomposed into triangles in 2D and tetrahedrons in194

3D to allow for accurate integration of the weak form of governing equation by195

Gauss quadrature. The decomposition is formed by first identifying the intersection196

points xΓi along element edges, that is where φ = 0; see Figure 2. The position of197

the intersection points is defined by the level set value at the nodes on the edge.198

In the rest of this work we will frequently operate on the XFEM interface,199

Γ . This is the set of edges (2D) or faces (3D) defined by the intersection points200

xΓi . The position of the XFEM interface Γ is related to the design variables by201

the positions of its nodes, the intersection points xΓi . The connection of these202

intersection points creates edges (2D) or faces (3D). To compute our feature size203

measure we operate on this mesh. The positions of the nodes (intersection points)204

of this surface mesh are functions of the design variables.205

3 Feature Size Measure206

Here we develop a measure of minimum feature size that operates on surface207

meshes such as those generated in topology optimization by LS-XFEMs. First, we208

seek to compute a scalar value that identifies whether a minimum feature size is209
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Fig. 3: Interface geometry for measure calculation.

violated. Using this geometry will ensure consistency between the XFEM analysis210

of the physics and the analysis of the feature size.211

Our approach is closely related to the work of Chen et al (2008) uses a quadratic212

energy approach. Their work utilizes a double integral over the phase boundary.213

In practice the double integral is computed numerically using Gauss quadrature.214

At each set of comparison points the Euclidean distance and the tangent vectors215

are compared:216

Eq = −
∫

p

∫

p′
t(p) · t(p′)ψ(|x(p)− x(p′)|) dp dp′, (6)

where p and p′ are points along the phase interface, t is the tangent vector on217

the interface and x is the Euclidean position. This measure requires that tangent218

vectors are formed in a consistent direction along the interface. In 2D for arbitrary219

sets of surfaces this can be completed by computing the cross-product of the out-220

of-plane vector and the interface normal. The quadratic energy function Eq also221

may identify corners even if their radius is large. Corners on a surface mesh will be222

constructed of a series of line segments. Without additional smoothing the tangents223

will be discontinuous and may excite the measure. We seek to allow sharp corners224

in the surface as long as their angles are sufficiently large.225

3.1 Measure Calculation226

Similar to Chen et al (2008), the measure, M , is a double integral over the phase227

interface and the integrand is a product of two Heaviside functions, written as:228

M =

∫

Γ2

∫

Γ1

H

(
t12(s)

|x12(s)| − rtx
)
·H (|x12(s)| − rx) dΓ1dΓ2, (7)

where229

H(a) =





0 a ≤ 0

1 0 < a
(8)
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Fig. 4: Initial estimate for appropriate rtx value with points equidistant about a
right-angle corner.

A graphical representation of an interface and two comparison points is shown230

in Figure 3 where the Euclidean distance between the points x1(s) and x2(s) is231

written as:232

|x12(s)| = x1(s)− x2(s), (9)

while the distance along the interface between points is t12(s). The position of the233

interface is a function of the design variables.234

The product of Heaviside functions identifies points that are close in Euclidean235

distance (second Heaviside function) and are relatively far in interface distance236

(first Heaviside function). The value of the first Heaviside function is restated as:237

H

(
t12(s)

|x12(s)| − rtx
)

=





0 t12(s)
|x12(s)| ≤ rtx

1 t12(s)
|x12(s)| > rtx

(10)

The second Heaviside function identifies points that are nearby in Euclidean dis-238

tance, points that violate the feature size, rx:239

H (|x12(s)| − rx) =





0 |x12(s)| ≥ rx

1 |x12(s)| < rx
(11)

The scaling rtx that is found in the first Heaviside function is generally chosen to240

be:241

rtx = 2/
√

(2). (12)

This ratio is the relative distance of an opposing point equidistant around a 90-242

degree corner, shown in Figure 4. The impact of this choice of scaling, rtx, will be243

discussed later and studied in a numeric example.244

The above measure does not distinguish between features of different phases.
To allow the measure to identify features formed by a particular phase we modify
it such that:

M =

∫

Γ2

∫

Γ1

H

(
t12(s)

|x12(s)| − rtx
)
·H (|x12(s)| − rx)

·H (PS [x12(s)] · n1(s)) dΓ1dΓ2. (13)

The additional, Heaviside function allows the measure to identify features that245

are formed by a phase. This identification is performed by comparing the vector246
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between the two points to the interface normal at the first point. The normal247

is constructed so that it points from the first phase into the second. If the dot248

product of the normal n and the vector x12 is positive the feature is identified as249

being formed by the second phase. If the value is negative the feature is formed by250

the first phase. To change which phase forms features that are identified, a switch251

value, PS , is used so that:252

PS =





1, Identify Phase 1 Features

−1, Identify Phase 2 Features
. (14)

The measure (13) will be incorporated into the optimization problem as either253

a penalty or inequality constraint. The penalty is used as a weaker form of enforce-254

ment as it allows the optimizer to violate the minimum feature size to produce255

better performance. This is useful as an initial step to allow designs some freedom256

to change topology.257

A normalized constraint (15) is preferred to strictly enforce feature size. Nor-258

malizing the measure by perimeter allows the designer to choose a single value259

of allowable violation, cMN , regardless of the problem perimeter. The constraint,260

gFS,N , on feature size can be written as:261

gFS,N =
M

P 2
− cMN ≤ 0, (15)

where the feature size measure, M , is normalized with the square of the perime-262

ter, P , and bound by some small value, cM . The smaller cM , the more strongly263

the constraint is enforced. This form is useful where perimeter is constrained. For264

certain problems this approach may lead to geometric features that only act to265

increase the design’s perimeter. The increase in perimeter allows for larger feature266

size violations in the normalized form of the constraint (15). A form of the con-267

straint that does not incorporate the normalization (16) is used when necessary268

to bypass this difficulty. The constraint may also be written as:269

gFS = M − cM ≤ 0, (16)

where the normalization by perimeter is removed. The allowable violation cM in270

this form can be chosen as:271

cM = P 2cMN , (17)

where the perimeter P is take from some characteristic design.272

To ensure the differentiability of the measure with respect to the position of273

the interface nodes the Heaviside functions in (7) and (13) are relaxed with a274

smoothed Heaviside, Ĥ(a):275

Ĥ(a) =





a ≤ −wa 0.0

−wa < a < wa
1
2 + a

wa

[
15
16 − a2

w2
a

(
5
8 − 3

16
a2

w2
a

)]

wa ≤ a 1.0

(18)

We set the width of the Heaviside, wa, equal to a function of the feature size.276

Numerical experiments have shown that for the first and third Heaviside functions277

the width can be set to a small value, wa = rx/10. The second Heaviside, which278

drives our measure of feature size, should be set to a larger value: wa = rx/2.279
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4 Numeric Examples280

In this section we examine the application of this measure to different design281

problems. It is important to note that to strictly enforce the feature size measure in282

both phases prevents the change of topology. In the LS-XFEM, creation, merging283

or removal of holes requires the formation of small features. If these small features284

are not allowed, changes in topology cannot happen and the variation of designs285

is severely limited. This consideration will be discussed in this section.286

We first apply the the feature size measure to the well-known MBB design287

problem. This solid mechanics problem leads to the development of many thin,288

truss-like structures (Michell, 1904). The MBB problem will be studied to illustrate289

the differences between applying the measure to one or both phases. We also study290

the enforcement of the measure considering different minimum feature sizes.291

We apply the feature size measure to the force inverter design problem (Bendsøe292

and Sigmund, 2003). In the LS-XFEM this problem is difficult to solve with a sin-293

gle material as the optimizer drives the connection towards a thin hinge that can294

disconnect leading towards discontinuous response of the performance with respect295

to the design variables.296

Finally, a convective design problem is also studied. This class of problems also297

leads to thin geometric features but primarily seeks to maximize surface area of the298

interface. In this example an initial design of a semi-circle is used. The complex,299

wavy surface that is produced by this problem also provides a clear demonstration300

of the influence of varying the parameter rtx.301

4.1 Optimization Problem302

The design problems studied here have a state-dependent objective. The inequality303

constraints in this work are not state dependent and only depend on the LSF, which304

is an explicit function of the optimization variables. The class of optimization305

problems considered here can be written as follows:306

mins Z (s,u (s)),

s.t. gi(s) ≤ 0 i = 1 . . . Ng ,

s ∈ S =
{
RNs |sLi ≤ si ≤ sUi , i = 1....Ns

}
,

(19)

where the objective Z is a function that depends on the vector of optimization307

variables s and the vector of state variables u. Ns optimization variables si are308

bound by the lower and upper limits, sLi and sUi . The state variables satisfy the309

governing equations of the particular problem as described below. The system is310

constrained by Ng inequality constraints.311

The Globally Convergent Method of Moving Asymptotes (GCMMA) of Svan-312

berg (2002) is used to solve the optimization problem. The GCMMA parameters313

are: relative step size, 0.04; minimum asymptote adaptivity, 0.5; initial asymptote314

adaptivity, 0.7; maximum adaptivity, 1.43; and constraint penalty, 50. The opti-315

mization problem is considered converged if the change of the objective function316

relative to the initial objective value is less than 10−6 and the constraints are317

satisfied.318
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Fig. 5: Configuration of boundary conditions and design domain for MBB beam
example.

4.2 MBB Beam319

4.2.1 Setup320

We demonstrate the basic functionality of the feature size measure using the well-321

known MBB beam design problem. The exact parameter set is taken from Sigmund322

(2009). The objective is to minimize strain energy of a beam by arranging a limited323

amount solid material in a domain, Figure 5. Optimal designs typically have many324

thin truss-like structures; see Michell (1904), making this a logical problem to325

apply a feature size constraint to.326

Additional regions (shown in Figure 5 as dotted area), are included in the mesh327

above and below the design domain. In these regions, the design variables are fixed328

to +1, ensuring void. These additional regions are used to ensure that both edges329

of a feature that lies along the top of the design domain are part of the XFEM330

interface so they can be accounted for by the feature size measure.331

The objective, Z (s,u), is written as:332

Z (s,u) =

∫

ΩS

1

2
σijεijdΩS + cMPM, (20)

where ΩS is the domain of solid material, σij the elastic stress and εij the elastic333

strain. The factor cMP is a scaling coefficient for a penalty on the feature size334

measure M . We assume a linear, elastic constitutive and kinematic models with335

an Elastic modulus of E = 1.0 and Poisson ratio of ν = 0.3. The constraint, g1, is336

written as:337

g1 = VS − cvVT ≤ 0, (21)

where the solid material volume, VS , should be less than some fraction, cV , of the338

total design domain volume, VT . In this example, cv is set equal to 0.5. The second339

constraint is that of feature size; i.e. g2 = gFS,N , (15). The choice of cMN and340

cMP will be stated and discussed for each configuration.341

The states are computed by solving the weak form of the governing equations,342

written as:343

R =

∫

ΩS

δεijσijdΩS +

∫

ΓN

δuiFi , (22)
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Fig. 6: Initial design for MBB beam optimization.

Table 1: MBB beam configuration parameters.

Value

Elements 150× 50

Filter Radius rf = 0.016

Number of design variables NS = 7701

Lower Bound sL = −1

Upper Bound sU = 1

Level Set Scaling lφ = 1
75

where ΓN is the boundary where an external force, Fi is applied and ui is the344

vector of displacements. The elastic strain is written as:345

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (23)

while the stress is written as:346

σij = λδijεkk + 2µεij , (24)

where δij is the Kronacker-Delta operator and λ and µ are the Lamé parameters:347

λ =
Eν

(1 + ν) (1− 2ν)
, (25)

348

µ =
E

2 (1 + ν)
. (26)

The test function is δu while δεij is the elastic strain operating on the test function349

δu.350

The initial design for performing the optimization consists of a series of 16× 6351

cuboid void inclusions of radius 0.025 and is shown in Figure 6. Other parameters352

are shown in Table 1. The design variables within a radius of 0.066 of points a and353

b are fixed to −1, ensuring a region of solid material around the points.354

107



www.manaraa.com

LS-XFEM Feature Size Control 13

Fig. 7: Final design for MBB beam optimization with no feature size constraint
(cMN =∞ , cMP = 0).

4.2.2 Enforcing Small Feature Size Changes355

To enforce feature size we begin with an optimized design where feature size356

is omitted (cMN = ∞ , cMP = 0). We take this approach to ensure that the357

most change in design topology is allowed before the enforcement of feature size.358

The design will first be optimized starting with the layout in Figure 6 (cMN =359

∞ , cMP = 0), then restarted with an additional constraint on the feature size360

(cMN << 1, cMP = 0).361

The result of the initial optimization (cMN =∞ , cMP = 0) is shown in Figure362

7. In addition to the thin truss-like features there are small, thin inclusions near363

some corners. We will now illustrate the influence of the feature size constraint on364

the geometry.365

If we consider enforcing minimum feature sizes that are similar to the minimum366

feature size in Figure 7 we can restart the optimization from this design and367

activate the feature size constraint (cMN << 1 , cMP = 0). We choose a feature368

size that is approximately one element width larger than features in the initial369

design, rx = 0.02. Enforcing a feature size, rx = 0.02, to both phases yields (7)370

the designs shown in Figure 8a and c. In Figure 8a the constraint is enforced371

strictly, setting cMN = 1 × 10−4 while in Figure 8c it is enforced loosely with372

cMN = 1 × 10−2. The resulting difference is most visible in void corners that373

become thin, where the angle is most acute. The beam-like structural feature that374

is most thin in Figure 7 is also thickened more in Figure 8a.375

We also note here, as will be more obvious later, that the actual size that is376

visibly enforced is larger than the prescribed feature size. With closer examination,377

Figure 9, the resulting designs reflect a minimum feature size that is close to378

(1.5 × rx). The increase in size corresponds to the smoothed Heaviside width379

added to the prescribed feature size. This simple relationship is an important380

consideration for use of this measure. Prescribing a smaller smoothed Heaviside381

width will allow for more exact representation of the feature size but less smooth382

response of the measure.383

Enforcing the minimum feature size, rx = 0.02 only in the solid material phase384

(13) results in the designs shown in Figure 8b and d, the former being a strict385

enforcement (cMN = 1 × 10−4) and the latter a loose enforcement (cMN = 1 ×386

10−2). In this example the differences between the two are less noticeable than387

in Figure 8a and c. They key difference here is that the one particularly thin388
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Fig. 8: Optimized designs after application of feature size constraint (rx = 0.02)
to (a) both phases with a strict constraint, cMN = 1×10−4, (b) the solid material
phase with a strict constraint, cMN = 1 × 10−4, (c) both phases with a loose
constraint cMN = 1× 10−2 or (d) the solid material phase with a loose constraint
cMN = 1 × 10−2. Blue circles identify regions that demonstrate differences in
the designs. Red circle show the approximate size of the prescribed feature size.
(cMP = 0)

Fig. 9: Influence of smoothed Heaviside width on minimum feature size. Solid red
circle radius is equal to the prescribed feature size. Dashed red circle is 1.5 × rx,
corresponding to sum of the effects of the feature size and the Heaviside width.

structural member from Figure 7 is more thickened in Figure 8b than Figure 8d.389

As shown in Table 2 we find that more strictly constrained designs have a larger390

strain energy than those that are loosely constrained. This holds for both allowable391

violation and when comparing enforcement in only a single phase to both. The392

unconstrained (cMN = ∞ , cMP = 0) design appears to have stopped in a local393

minima that is a worse performing design than any of those found with additional394

feature size constraints.395
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Table 2: MBB Beam final strain energy values for Figures 6, 7 & 8.

Comments Strain Energy

Figure 6 Initial Design 2.51× 10−2

Figure 7 No Enforced Feature Size 7.94× 10−3

Figure 8a Strictly Enforced Feature Size, Both Phases 8.01× 10−3

Figure 8b Strictly Enforced Feature Size, Solid Phases 7.92× 10−3

Figure 8c Weakly Enforced Feature Size, Both Phases 7.86× 10−3

Figure 8d Weakly Enforced Feature Size, Solid Phases 7.85× 10−3

Table 3: MBB Beam final strain energy values for Figure 10, see Table 4 for more
details.

Comments Strain Energy

Figure 10a Step 1, No Enforced Feature Size 7.94× 10−3

Figure 10b Step 2, rx = 0.01 via penalty 7.87× 10−3

Figure 10c Step 3, rx = 0.02 via penalty 8.02× 10−3

Figure 10d Step 4, rx = 0.03 via penalty 9.12× 10−3

Figure 10e Step 5, rx = 0.04 via penalty 1.04× 10−2

Figure 10f Step 6, rx = 0.05 via penalty 1.20× 10−2

Figure 10g Step 7, rx = 0.06 via penalty 1.27× 10−2

Figure 10h Step 8, rx = 0.06 via constraint 1.47× 10−2

4.2.3 Enforcing Larger Minimum Feature Size396

To enforce a larger feature size (rx = 0.06) difficulties in utilizing only an inequality397

constraint are found. Enforcing the feature size using the strict value of allowable398

violation (cMN = 1× 10−4 , cMP = 0) results in little topology change. Allowing399

little topology change while substantially increasing the minimum feature size leads400

to poorly performing optimized designs. To overcome this we utilize a continuation401

approach. Increasingly larger values of feature size are enforced through a penalty402

over a number of steps until the prescribed value is reached (cMN =∞ , cMP = 1).403

Once the prescribed value is reached via penalty the penalty is removed and the404

constraint is applied to ensure strict enforcement (cMN << 1 , cMP = 0).405

Applying the continuation approach to enforce a minimum feature size in both406

phases results in the design sequence shown in Figure 10. In all of the designs407

shown it is clear that the minimum feature size is well-enforced in both phases.408

In Figure 10e and f all inclusions appear to be larger than the prescribed radius.409

The final design shown in Figure 10h depicts a problem with the approach, that410

is the small inclusion in the upper left corner. In this case the inclusion is largely411

ignored by the measure because of its small overall length and lack of closure.412
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Fig. 10: Optimized designs at the end of each stage of the continuation approach
described in Table 4 controlling minimum feature size in both phases. Red circles
show size of prescribed minimum feature size.

For the continuation approach we find that as the minimum feature size radius413

increases, so does the strain energy (Table 3).414

Figure 11 depicts the sequence of designs resulting from enforcement of min-415

imum feature size in only the solid material phase. In this example we note that416

the inclusions are generally less smooth than those of Figure 10. The penalty on417

the resulting strain energy is less for all intermediate designs but the final (Table418

5). It appears that the small inclusion seen in Figure 10h that is ignored by the419

measure is of substantial benefit to the structure. Due to the non-convex nature of420

the design problem, Figure 11 does not find this minima. We again note that the421

minimum feature size of the final design well-matches 1.5× rx due to the width of422

the smoothed Heaviside function.423

4.3 Force Inverter424

Here we study the force inverter problem. A description of this problem can be425

found in Bendsøe and Sigmund (2003). The problem configuration is shown in426

Figure 12. The goal is to minimize the positive displacement in the x-direction427

at point b. We penalize the perimeter, volume fraction and feature size measure.428
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Table 4: MBB beam continuation approach.

Stage cMN cMP rx Number of
Optimization
Iterations

a ∞ 0.0 0.0 500

b ∞ 10.0 0.01 300

c ∞ 10.0 0.02 100

d ∞ 10.0 0.03 100

e ∞ 10.0 0.04 100

f ∞ 10.0 0.05 100

g ∞ 10.0 0.06 100

h 1× 10−4 0.0 0.06 500

Fig. 11: Optimized designs at the end of each stage of the continuation approach
described in Table 4 controlling minimum feature size in the solid material phase.
Red circles show size of prescribed minimum feature size.
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Table 5: MBB Beam final strain energy values for Figure 11.

Comments Strain Energy

Figure 11a Step 1, No Enforced Feature Size 7.94× 10−3

Figure 11b Step 2, rx = 0.01 via penalty 7.88× 10−3

Figure 11c Step 3, rx = 0.02 via penalty 7.93× 10−3

Figure 11d Step 4, rx = 0.03 via penalty 8.53× 10−3

Figure 11e Step 5, rx = 0.04 via penalty 9.35× 10−3

Figure 11f Step 6, rx = 0.05 via penalty 9.84× 10−3

Figure 11g Step 7, rx = 0.06 via penalty 1.22× 10−2

Figure 11h Step 8, rx = 0.06 via constraint 1.79× 10−2

Fig. 12: Force inverter problem setup.

We introduce the volume penalty to weakly enforce a 20% volume constraint. The429

objective is written as:430

Z (s,u) = ub + cMPM + cvol min

(
0 ,

[
VS

cvpVT
− 1

])
+ cpP. (27)

where we incorporate a penalty on feature size cMP , perimeter cp and on volume431

cvol. The material parameters are presented in Table 6. The initial design, which432

is a series of cuboid inclusions is shown in Figure 12.433

A continuation approach is used here to achieve a good design. First, a number434

of optimization stages are performed using a two-material problem. The void phase435

is modeled as a soft (E2 = 0.1 E1) material. Once a reasonable design has been436

achieved with the two material configuration the soft void phase is removed. As437

the soft material is removed the constraint on feature size prevents the hinge438

from becoming overly thin and disconnecting. Here the non-normalized feature439

size constraint (16) is utilized. The approach discussed here is given in Table 7.440

The feature size that is enforced is rx = 5.441

The result of the continuation approach in Table 7 is shown in Figure 13.442

The designs at the end of each segment are shown. The first segment (a), obtains443

the general geometry of the design while allowing a larger amount of solid volume.444

Segment (b) uses a penalty to remove solid volume, driving towards the 20% value.445

Segment (c) introduces the feature size as a penalty and constrains the volume to446
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Table 6: Forcer inverter problem parameters.

Property Value

Material Stiffness E1 = 180× 103

Void Material Stiffness E2 = 180× 102

Poisson Ratio ν = 0.3

Input load fa = 1.45× 105

Input Spring Stiffness Ka = 4000

Output Spring Stiffness Kb = 1000

Final Allowable Volume Fraction cv = 0.2

Table 7: Forcer inverter problem continuation approach.

Step Perimeter
Penalty
cp

Optimization
Iterations

Volume
Penalty
cvol

Feature
Size
Penalty
cMP

Feature
Size Con-
straint
cM

Constrained
Volume cv

Penalized
Volume
cvp

Soft or
Void
Second
Phase

a 500 1× 10−4 0 0 ∞ 0.4 0.2 Soft

b 200 1× 10−4 100 0 ∞ 0.4 0.2 Soft

c 100 1× 10−4 0 1 ∞ 0.2 0.2 Soft

d 35 0 0 0 ∞ 0.2 0.2 Soft

e 100 1× 10−4 0 0 50.0 0.2 0.2 Soft

f 200 1× 10−4 0 0 50.0 0.2 0.2 Void

20%. Segment (d) relaxes the feature size and perimeter penalties in an effort to447

remove extraneous material. Segment (e) introduces the feature size enforcement448

via constraint so that the soft material can then be removed in segment (f). The449

enforcement of feature size allows for the retention of the hinge even when the450

optimizer drives towards removing it. The side affect of this strict enforcement is451

that extraneous feature may be retained and require care to remove.452

4.4 Convective Design453

4.4.1 Setup454

To study the feature size measure for another physical problem, we take the heat455

conduction problem with edge convection of Coffin and Maute (2015). The ob-456

jective of this problem is to minimize the temperature where heat is applied by457

arranging a limited amount of diffusive material. The in-plane boundaries of the458

diffusive material are subject to a simplified convection boundary condition. This459
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Fig. 13: Force inverter design progression. See Table 7 for details.

Fig. 14: Convective design problem setup.

class of problems leads very thin solid and void features that can hamper design460

convergence.461

The problem setup is shown in Figure 14. A heat flux qB is applied at point B462

and at the far field, Γ∞, the temperature is fixed, TF = T∞. The objective Z is463

written as:464

Z (s,u) = TB . (28)

In a classical Newton’s Law of Cooling formulation a single diffusive material would
be used. The temperature in the fluid (or void) domain would be prescribed to be
the far-field temperature. To deter the formation of disconnected fluid inclusions
we utilize two diffusive materials, one for the solid and one for a fictitious fluid. The
conductivity in the fictitious fluid is set to be large relative to the solid κF >> κS
so that on the fluid-solid interface the temperature is nearly the far-field value
TF ≈ T∞. The residual form of the governing equations (Coffin and Maute, 2015)
is written as:

R̃T =

∫

Ω̃S

∂δT̃S
∂x̃i

δij
∂T̃S
∂x̃j

dΩ +

∫

Ω̃F

∂δT̃F
∂x̃i

κF
κS

δij
∂T̃F
∂x̃j

dΩ

−
∫

Γ̃q

δT̃S
LCqq
κSTref

dΓ −
∫

Γ̃FS

δT̃F
hLc
κS

(
T̃S − T̃F

)
dΓ = 0, (29)
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Table 8: Convective design problem parameters.

Property Value

Applied Heat qB = 1.0

Solid Diffusivity κS = 1.0

Fluid Diffusivity κF = 5.0

Convection Coefficient h = 0.1

Characteristic Length LC = 1.0

Far Field Temperature T∞ = 0.0

Reference Temperature Tref = 0.0

Table 9: MBB beam configuration parameters.

Value

Elements 100× 50

Filter Radius rf = 0.048

Number of design variables NS = 2601

Lower Bound sL = −0.02

Upper Bound sU = 0.02

Level Set Scaling lφ = 1.0

Outer Design Radius rd = 0.8

where T̃S and T̃F are the non-dimensional solid and fluid temperatures. The solid465

and fluid diffusivities are κS and κF , h the convection coefficient, LC the character-466

istic length and qq the boundary heat flux. The material properties are described467

in Table 8.468

The optimization parameters are given in Table 9. In this problem the design469

is prescribed to be symmetric, that is that design variables are only defined on470

nodes in the left half of the mesh. Level set values at nodes on the right half of the471

mesh are set equal to those on the left. An outer design radius is also specified,472

rd, beyond which the design variables are set equal to the upper bound.473

4.4.2 Results474

To simplify the initial design of the convective problem we choose a semi-circle, r =475

0.5; see Figure 15. As observed in previous studies (Coffin and Maute, 2015; Bruns,476

2007), the design is expected to grow branches out from the initial circle. While477

the geometry changes are radical there is little change in topology. This particular478

evolution of geometry in the design process ensures that for all values of minimum479

feature size less than the initial circle radius, there will be no initial violation of480

the feature size constraint. With no continuation approach the constraint can be481
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Fig. 15: Initial design for convective design problem.

Fig. 16: Convective design resulting from no feature size enforcement (cMN =∞).

enforced strictly, cMN = 1×10−4. Table 10 shows the final objective temperatures482

from the examples in this section.483

Figure 16 shows the result of not enforcing any minimum feature size. This484

optimization does not yield a converged design. Branches are formed from the cir-485

cular base, their connection to the base grows thin and eventually they disconnect486

and are removed from the design. After the branches disconnect from the base, new487

branches form. Without additional regularization this leads to a continuous mor-488

phing of the geometry. More details on this issue and the need for regularization489

is provided in Coffin and Maute (2015).490

Optimizing for a selection of minimum feature sizes a series of complicated491

geometric structures emerge; see Figure 17. The nature of the design problem leads492

to these complicated shapes. This design problem is also strongly non-convex.493

This design problem drives to increasing surface area and wavy boundaries494

(Figure 17) making it a good example for demonstrating the influence of rtx. The495

parameter rtx is an important scaling in (7) and (13). It determines regions of496

nearby points that are excluded as their interface distance is small relative to497

their Euclidean distance. Selecting the configuration of Figure 17c, the scaling is498

varied and the resulting designs are shown in Figure 18. Note: Figure 17c and499

18c are identical. For small values of scaling, rtx < 1.2 little feature development500

occurs because the measure identifies nearly all curvature as violations. As values501

of the scaling increase, more features and oscillations are allowed. The choice of502

rtx = 2/
√

2 (Figure 18c) allows a visually appealing degree of feature development503

while rtx = 1.2 (Figure 18b) may be a good choice to promote smooth designs.504

5 Conclusions505

This paper presented a novel measure to identify and control minimum feature size506

in Level Set (LS) eXtended Finite Element Method (XFEM) topology optimiza-507
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Fig. 17: Final convective designs with varying minimum feature size: a, rx = 0.04;
b, rx = 0.08; c, rx = 0.16.

Fig. 18: Final convective designs with varying exclude ratio, rtx, minimum feature
size, rx = 0.08: a, rtx = 1.0; b, rtx = 1.2; c, rtx = 2/

√
2; d, rtx = 1.9.
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Table 10: Convective design objective temperatures.

Temperature at B

Figure 15 8.14

Figure 17a 2.67

Figure 17b 3.40

Figure 17c 4.14

Figure 18a 8.00

Figure 18b 3.30

Figure 18c 3.40

Figure 18d 3.20

tion. The scalar measure identified features using the discretized surface geometry508

of the XFEM model. This differentiates it from existing methods that directly509

utilize the LSF. The measure differs from the quadratic energy approach in that510

it does not use surface tangent information. This allows it to permit sharp corners511

found on a discretized surface.512

The measure was demonstrated via numerical experiments using three design513

problems: the MBB beam, force inverter and a heat transfer device with edge514

convection. The measure was incorporated both as a constraint and as a penalty.515

In cases where the feature size could be enforced strictly the constraint was used.516

In cases where a strict enforcement overly restricted design changes the measure517

was enforced with the penalty.518

The measure was shown to be effective in identifying and enforcing a minimum519

feature size when utilized as an inequality constraint. In application to the MBB520

beam it was shown that the minimum feature size can be strongly enforced in521

either a single material phase or both. Used as a constraint, enforcing a minimum522

feature size much larger than the current geometry can be problematic. For larger523

changes it is necessary to use a continuation approach, using a penalty to enforce524

increasingly large feature sizes.525

The forcer inverter required a careful continuation approach to ensure that526

extraneous geometric features were removed while not disconnecting the hinge.527

Once a good initial design was achieved via a two material problem fine tuning528

could be performed in the solid-void configuration. The enforcement of the min-529

imum feature size enabled this fine tuning to occur, preventing the hinge from530

disconnecting.531

Application of the measure to the convective design problem was shown to532

be simpler due to the simple initial design. The use of a simple initial design also533

ensured that the constraint was satisfied initially. The scaling of the feature sensing534

within the measure was also explored with the problem and a range of baseline535

values were found.536

The key conclusions drawn from this study are summarized as: The measure537

as presented allows flexible and strict enforcement of a minimum feature size. The538

construction makes deterring the formation of small features convenient. Removing539
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existing small features requires more care. Incorporation of the measure into an540

inequality constraint also allows for strict enforcement but is a difficult approach541

when initial designs violate the constraint. Finally, the parameter of the measure542

allows for some control over surface roughness-like features.543

This measure provides a robust tool for identifying violations of a minimum544

feature size to the designer using LS-XFEM topology optimization. The measure545

also allows some control over surface roughness or curvature via its scaling pa-546

rameter. It requires care to use the measure to produce large changes in feature547

size however. It also, by construction can be difficult to develop a continuation548

approach to allow feature development and topology change while enforcing a549

minimum feature size on the final design. Future work is necessary to develop550

robust continuation schemes or formulations to balance feature development and551

minimum feature size constraint.552
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